LD r,(HL)

\I)l) ;\, r
I[Fce TRUE,

ADD A, (1

SRA m

PC 4 nn

SRI. m
X + d)
RRD

Cat. No. 26-2012

Custom Manufactured in USA by RADIO SHACK, A Division of TANDY CORPORATION

READ ME FIRST

All computer software is subject to change, correction, or improvement as the
manufacturer receives customer comments and experiences. Radio Shack has
established a system to keep you immediately informed of any reported prob-
lems with this software, and the solutions. We have a customer service network
including representatives in many Radio Shack Computer Centers, and a large
group in Fort Worth, Texas, to help with any specific errors you may find in,
your use of the programs. We will also furnish information on any improve-
ments or changes that are ‘‘cut in’’ on later producticn versions.

To take advantage of these services, you must do three things:

(1) Send in the postage-paid software registration card included in this manual
immediately. (Postage must be affixed in Canada.)

(R) If you change your address, you must send us a change of address card
(enclosed), listing your old address exactly as it is currently on file with us.

(3) As we furnish updates or “‘patches’’, and you update your software, you
must keep an accurate record of the current version numbers on the logs
below. (The version number will be furnished with each update.)

Keep this card in your manual at all tirnes, and refer to the current version
numbers when requesting information or help from us. Thank you.

APPLICATIONS SOFTWARE OP. SYSTEM
VERSION LOG VERSION LOG

03.02.00

875-9242/2/28/83

TANDY COMPUTER PRODUCTS

CUSTOMER SERVICE BULLETIN NO. | 2012-01

I B - a
Description ALDS
0036x6259%2 Model 4 Ver. 03.02.00
KRESSBACH W J
331 ANTHONY CT Stock No. 260-2012
ADRIAN MI 49221
Date DEC 31. 1986

xxx33¥ PURPOGE 3¢

Our records indicate that vou are the registered ouner of
ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM (ALDS) for the Model 4. This bulletin
applies to the Model 4 version of the program only. Please verify your
version number with that shoun on the Model line above. The MWait on Errors
switch for the assembler does not stop on every error and the Hold Key does
not function. To correct these problems you should make the PATCHES to your
softuare detailed in the PROCEDURE section (belon) as soon as possible.

»* » THE FOLLOWING PATCHES ARE REQUIRED FOR THE MODEL 4 VERSION »

2#%3¢%% DISCUSSTION ¢3¢¢3¢
The modifications required will be accomplished by the
series of PATCHES listed in the PROCEDURE section. If you are unfamiliar nith
;P?TCHING" vour softuware, please refer to vour computer UOWNER'S MANUAL for
elp.

After making these PATCHES vour software will be upgraded
to Version 83.02.81. Be sure to marK this version in vour SOFTHARE VERSION
LOG. ALEDIT is the only module that will contain this new version npumber.

You may continue to use any previous version of ALDS;
houever please be aware that until further notice, Version #35.82.81 of the
Model 4 software is the only one for which we will be developing any softuware
corrections. The current Model 111 version remains H3.8Z2.88.

Please check the front and back of all of your seitware
manuals and be sure that all SOFTWARE REGISTRATION CARDS have been mailed to
us. This will ensure that you receive notifications about required.changed to
other packages you oun.

Letters will come direct to you when patches or changes are
REQUIRED. Other, OPTIONAL patches or changes may be available for wour
softuare. Contact vour local Radioe Shack Computer Center or Participating
Radio Shack Dealer for information about possible optional patches or changes.

3036063¢% PROCEDURE 3€3¢3¢3¢3¢
At TRSDOS READY, apply the following PATCHES to a BACKUP
copy of Model 4 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM:

PATCH ALASM (DB6,53=CD 4A 3D #8:FP6,53=38 #2 18 #3D

PATCH ALASM (DB8,81=5C:F@8,#1=5F)

PATCH ALASM (DB9,39=88 EF CH:FP9,39=65 EF FD)

PATCH ALASM (D89,48=FE 88 28 CE FE 64 CH FD:Fg9,498=CB BA 46 28 CD FD CB HA)
PATCH ALASM (D#9,48=CB BA 8E 3E #1 EF FE 88:F89,48=4E C8 FD CB #A 8E 3E 65)
PATCH ALASM (Dg9,58=28 Cd C9 ¢#¢ g0 g8 g¢g gd:FE9,50=EF FD CB BA 46 20 BB FD)
PATCH ALASM (DB9.58=98 g9 88 88 8P B9 g9 A8:FP9,58=CB #A 56 28 F1 FD CB 4A)
PATCH ALASM (DBE9,.68=gg #8:F89,68=96 C9)

PATCH ALEDIT/CMD (DHH,31=31:F@H,31=30)

RADIO SHACK SOFTWARE REGISTRATION, DATA PROCESSING, P.O. BOX 2910, FORT WORTH, TX 76113-2910
i i

TANDY COMPUTER PRODUCTS

CUSTOMER SERVICE BULLETIN NO. | 201203

[] e ™

Description ALDS

Model 4 Ver. 03.02.01
Stock No. 260-2012

Date JaN 2, 1987

2xxx%¥ PURPOSE »¢x3x

Qur records indicate that you are the registered ouner of
ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM (ALDS) for the Model 4. This bulletin
applies to the Model 4 version of this program only. Please verify vour
version number with that shoun on the Model line above. No cursor is present
in ALBUG under the M option in the ZAP mode. To correct this problem
vou should make the PATCHES to vour softuware detailed in the PROCEDURE section
(beloun) as soon as possible.

»* x THE FOLLOWING PATCHES ARE REQUIRED FOR THE MODEL 4 VERSION x

23333 DISCUSSION 2€¢x3¢3¢
The modifications required will be accomplished by the
series of PATCHES listed in the PROCEDURE section. 1f you are unfamiliar with
;P?TCHING" vour software, please refer to vour computer OWNER'S MANUAL for
elp.

After maKing these PATCHES vour softuware will be upgraded
to Version B83.82.82. Be sure to mark this version in your SOFTWARE VERSION
LOG. ALEDIT is the only module that will contain this new version number.

You may continue to use any previous version of ALDS;
houever please be aware that until further notice, Version 83.82.82 of the
Model 4 softuare is the only one for which we will be developing any softuare
corrections. The current Model II] version remains A3.82.8d.

Please check the front and back of all of vour softuare
manuals and be sure that all SOFTWARE REGISTRATION CARDS have been mailed to
us. This will ensure that vou receive notifications about required changed to
other packages vou oun.

Letters will come direct to you when patches or changes are
REQUIRED. Other, DOPTIONAL patches or changes may be available for vour
software. Contact your local Radio Shack Computer Center or Participating
Radio Shack Dealer for information about possible optional patches or changes.

#3xx%¥ PROCEDURE
At TRSDOS READY, apply the follewing PATCHES to a BACKUP
copy of Model 4 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM:

PATCH ALBUG/CMD (DOE,12=C3 5C:FBE,12=E5 (5>
PATCH ALBUG/CMD (DJE,18=E%4:FHE,18=4F)
PATCH ALEDIT (D#g,31=32:FB88,31=31)

RADIO SHACK SOFTWARE REGISTRATION, DATA PROCESSING, P.O. BOX 2810, FORT WORTH, TX 76113-2910
o | IR

TANDY COMPUTER PRODUCTS

CUSTOMER SERVICE BULLETIN NO. | 2012-04

r . \

Description ALDS

Model % Ver. 03.02.02
Stock No. .260-2012

Date JAN 2, 1987

33333 PURPOSE 3333

Our records indicate that you are the registered ouner of
ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM (ALDS) for the Model 4. This bulletin
applies to the Model % version of this program only. Please verify your
version number with that shown on the Model line above. MWhen using ALEDIT,
characters in the first column disappear when the cursor is moved. To correct
this problem yvou should make the PATCHES to vour softuare detailed in the
PROCEDURE section (below) as soon as possible.

% »x THE FOLLOWING PATCHES ARE REQUIRED FOR THE MODEL 4 VERSION »

2*3¢33%3 DISCUSSTON ¢3¢
The modifications required will be accomplished by the
series of PATCHES listed in the PROCEDURE section. If vou are unfamiliar wmith
;P?TCHING" vour software, please refer to vour computer OWNER'S MANUAL for
elp.

After maKing these PATCHES yvour software will be upgraded
to Version 3.82.83. Be sure to mark this version in your SOFTWARE VERSION
LOG. ALEDIT is the only module that will contain this new version number.

You may continue to use any previous version of ALDS;
houwever please be aware that until further notice, Version H83.82.83 of the
Model 4 software is the only one for which we will be developing any software
corrections. The current Model III version remains £3.82.44.

Please check the front and back of all of vour softuare
manuals and be sure that all SOFTWARE REGISTRATION CARDS have been mailed to
us. This will ensure that vou receive notifications about required changed to
other packages vou oun.

Letters will come direct to yvou when patches or changes are
REQUIRED. Other, OPTIONAL patches or changes may be available for your
software. Contact wour local Radio Shack Computer Center or Participating
Radio Shack Dealer for information about possible optional patches or changes.

2#33%% PROCEDURE 2¢%3¢3¢3¢
At TRSDOS READY, apply the Iollowing PATCHES to a BACKUP
copy of Model 4 ASSEMBLY LANGUAGE DEVELOPMENT SYSTEM:

PATCH ALEDIT/CMD (Dg£5,46=C3 E1 3E:F85,46=C5 D5 ES5)
PATCH ALEDIT/CMD (DSd,31=33:F@0,31=32)

RADIO SHACK SOFTWARE REGISTRATION, DATA PROCESSING, P.O BOX 2910, FORT WORTH, TX 76113-2910
[[]

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-QWNED COMPUTER CENTER, RETAIL STORE OR FROM A
RADIO SHACK FRANCHISEE OR DEALER AT TS AUTHORIZED LOCATION

LIMITED WARRANTY

CUSTOMER OBLIGATIONS

A

CUSTOMER assumes full responsibitity that this Radio Shack computer hardware purchased (the Equipment) and any copies of Radio
Shack software included with the Equipment or licensed separately (the —~Software”) meets the specifications capacity. capabilities
versatifity, and other requirements of CUSTOMER

CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software
are to function. and for its installation

RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A

9
D
E

For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment. RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing
defects THIS WARRANTY 1S ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION The warranty is void if the Equipment’s case or cabinet has been opened. or if the Equipment or Software has been
subjected to improper or abnormal use If a manufacturing defect is discovered during the stated warranty period . the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store. participating Radio Shack franchisee or Radio Shack dealer
for repair, along with a copy of the sales document or lease agreement The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair replacement. or refund of the purchase price at RADIO SHACK'S election and sole
expense. RADIO SHACK has no obligation to replace or repair expendable items

RADIO SHACK makes no warranty as to the design capability. capacity or suitability for use of the Software except as provided in this
paragraph Software is hicensed on an “AS IS basis without warranty. The original CUSTOMER S exclusive remedy in the event of a
Software manufacturing defect. is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software The defective Software shall be returned to a Radio Shack Computer Center a Radio Shack retail store
participating Radio Shack franchisee or Radio Shack dealer along with the sales document

Except as provided herein no employee agent, franchisee dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK)

Except as provided herein. RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Some states do not aliow limitations on how long an implied warranty lasts so the above limitation(s) may not apply to CUSTOMER

LIMITATION OF LIABILITY

A

EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT " OR “SOFTWARE'" SOLD. LEASED, LICENSED OR FURNISHED BY RADIO SHACK. INCLUDING BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT OR "SOFTWARE™. IN NG EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE. LEASE LICENSE USE OR ANTICIPATED USE OF THE “EQUIPMENT OR SOFTWARE

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES. RADIO SHACK S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR QTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR " EQUIPMENT " OR ~ SOFTWARE
INVOLVED.

RADIO SHACK shail not be tiable for any damages caused by delay in delivering or furnishing Equipment and/or Software

No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs

Some states do not allow the limitation or exclusion of incidental or consequential damages so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license 10 use the RADIO SHACK Software on one computer, subject to the following
provisions

B

G

Except as otherwise provided in this Software License. applicable copyright laws shall apply to the Software

Titie to the medium on which the Software is recorded (cassette and’or diskette) or stored (ROM) is transferred to CUSTOMER but not title to
the Software

CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.

CUSTOMER shall not use, make, manufacture or reproduce copies of Software except for use on ene computer and as is specifically
provided in this Software License Customer is expressly prohibited from disassembling the Software

CUSTOMER is permitted to make additional copies of the Software anly for backup or archival purposes or if additional copies are required 1n
the operation of ene computer with the Software, but only to the extent the Software allows a backup copy to be made However, for
TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use

CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
one sold or distributed The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER

All copyright notices shall be retained on all copies of the Software

APPLICABILITY OF WARRANTY

A

The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK seils or conveys such Equipment to a third party for lease to
CUSTOMER

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK. the author owner andsor licensor of the
Software and any manufacturer of the Equipment sold by RADIC SHACK

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights and the original CUSTOMER may have other rights which vary
from state to state

875-9186

ALDS
Assembly Language
Development System

TRSDOS® Version 6 Operating System: Copyright 1983 Logical Systems.
All Rights Reserved. Licensed to Tandy Corporation.

ALEDIT Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.
ALASM Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.
ALBUG Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.
ALLINK Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.
ALTRAN Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

TRS-80® Assembly Language Development System Manual: Copyright 1982, 1983
Tandy Corporation. All Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation of any
portion of this manual is prohibited. While reasonable efforts have been taken in the
preparation of this manual to assure its accuracy, Tandy Corporation assumes no lia-
bility resulting from any errors or omissions in this manual, or from the use of the
information obtained herein.

TRSDOS is a registered trademark of Tandy Corporation.

10 9 87 6 5 43 21

INTRODUCTION

To Our Customers,

This Assembly Language Development System (ALDS) is a powerful tool for
developing Z80 programs for the TRS-80 Models III and 4.

It contains these five systems:
ALEDIT, a Text Editor, for writing and editing source programs.

ALASM, an Assembler for converting source programs to Z80 object code. The
Assembler contains more than:

» 50 powerful directives. Among many features, they allow you to build
relocatable program sections, macro sections, index sections; generate a length
byte for text storage; and control the assembly listing format.

* 30 arithmetic, logical and relational operators.
* 10 “extended” Z80 mnemonics, which expand into an entire group of Z80
mnemonics.

ALLINK, a Linker, for linking relocatable program sections into absolute object
files.

ALBUG, a Debugger, for debugging a program in memory or altering a file on
disk. ALBUG is comprised of six program files: ALBUG, ALBUG/SYS,
ALBUG/OVL, ALBUGX, ALBUGRES/REL and ALBUG/RES.

ALTRAN, a File Transfer System, for transferring a file between the Models I,
II, 111, 4, 12 and 16.

Note: Models I, 11, 12 and 16 require the Model II ALDS package.

MODEL lii/4 ALDS

About This Manual

This manual assumes you already know Z80 assembly language programming
and have used an editor/assembler. It contains three sections:

Section I, Using ALDS, begins with a sample session which shows how to
create a modular program for the Models I1I and 4 using all five systems.
Following this session are reference chapters on each system.

Section II, ALDS Assembly Language, references the source language
acceptable to the ALDS Assembler. Chapter 7 outlines the syntax for writing
source lines. The remaining chapters reference all the directives, Z80
mnemonics, and extended Z80 mnemonics available.

Section III, Error Messages, lists the error messages that may be generated by
the ALDS programs.

If you are new to Z80 assembly language programming, we suggest you read:

More TRS-80 Assembly Language Programming by William Barden, Jr. (Radio
Shack Catalog Number 62-2075)

Note: Before going any further, please make a backup of your ALDS diskette.
See your system’s owners manual for instructions on making backups.

Notation Key

The manual uses these notational conventions:

Dot Matriw torepresent what you will see on the screen or should type.

KEY to represent a specific key you should press.
italics to represent a value you should specify.
H to represent a hexadecimal number. (For example, 4233H

represents the hexadecimal number 4233)

$ to represent the current value of the Assembler’s location counter.
(This is actually a convention of the Assembler.)

Jilespec to represent a valid TRSDOS file specification. (See your
TRSDOS manual for a definition of filespec.)

INTRODUCTION

Section I/ Using ALDS

Chapter 1/ Sample SesSIoNcoviiiiiie i 3
Chapter 2/ The ALDS Editoroooiiiiii e 11
Chapter 3/ The ALDS Assembler..................iiiiiiiii., 23
Chapter 4/ The ALDS Debugger ..., 29
Chapter 5/ The ALDS Linker ... 43
Chapter 6/ The ALDS File Transfer System................cooooiiiint. 47
Section II/ ALLDS Assembly Language

Chapter 7/ Assembly Language Syntaxc.ocoviiiiniiieiiiiiinne..n. 61
Chapter 8/ DIIECHIVES ...uottie et et et e 69
Chapter 9/ Z80 MNEMONICSot 115
Chapter 10/ Extended Z80 Mnemonicsovviriiiiieiiinnenieeaannn. 303

Section III/ Error Messages

g 03 g (30 o L 325
Appendices

Appendix A/ Undocumented Z80 Instructionsooovevveen.. 333
Appendix B/ ALDS Object Code Format...................cooovviiii . 338
Appendix C/ Numeric List of Z80 Instruction Setocoiviennnn. 341
Appendix D/ Alphabetic List of Z80 Instruction Set........................... 347
Appendix B/ Z80 Hardware ... 353
Tables

Table 1/ ALEDIT Command Mode Keys...........c.ccvviiiiiiiiiiiiiiin 13
Table 2/ ALEDIT Editor Commandsc.oocoiiiiiiiiniiiiinn 14
Table 3/ ALEDIT Insert Control functionscoooviiiviiiinnn 20
Table 4/ ALEDIT Insert Mode Special Keysooooviiiiin 21
Table 5/ ALEDIT Line Edit Mode Subcommandso.oe 21
Table 6/ ALEDIT Line Edit Mode Special Keysocoociiiinn. 22
Table 7/ ALASM SWiItChes........ooouiiiiiiie i 24
Table 8/ Debugger Commands............ocvviiiiiiiiiiiiiiiiiiiiiiiienen. 34
Table 9/ Baud Rate Change Table.......................o 48
Table 10/ OPeratorscooutiiii i e 64

Table 11/ Complex Expressions Allowing Relocatable or External Symbols 66

SAMPLE SESSION

Section I/
Using ALDS

SAMPLE SESSION

Chapter 1/
Sample Session

This manual is not a tutorial. To learn Assembly Language, see your computer
dealer for information on helpful books.

This chapter is for those of you who want to try a session using the entire ALDS
package. It demonstrates how to link separate program sections for the Models
I and 4.

This session is for demonstration only. To find out how and why each system
works the way it does, you will need to refer to specific chapters in this manual.

Note for Model 4: If at any time during this procedure you receive the message,
“File Already Open,’ type:

RESET filename

This command closes the open file.

Creating a Source File

In this session, you need to create five source program files. To do this, use the
ALDS Editor. In the TRSDOS Ready mode, type:

ALEDIT
this loads the ALDS Editor. After it displays its heading, type:
I

the insert command (Do not press (ENTER)). The Editor clears the screen and
prints NONAME/SRC in the upper right-hand corner. You are now in the insert
mode and can insert the first source program.

1. Main Program

To insert the first program, named MAIN, type the following commands (press (8)
between columns; press at the end of each line.):

MAIN PSECT
PUBLIC BEGIN
HTERN PRINT s TRSDOS

BEGIN LD HL. +M5G1
CALL PRINT iPrint Line MSGI
LD HL yMBG2
CALL PRINT iPrint Line MSGZ
JP TRSDOS

MODEL 1li/4 ALDS

MSG1 DEFT ‘YOU WILL BE ABLE TO LINK THIS'
DEFB @DH

MEGZ DEFT ‘AS EITHER A MODEL III OR 4 PROGRAM’
DEFB B0H
END BEGIN

When you are finished press (BREAK). This puts you in the Editor command mode.
If you made mistakes, you can use the Editor commands to edit the program.
They are all listed in Chapter 2, The ALDS Editor.

After pressing (BREAK), save this source program on disk by typing this Editor
command:

W MAIN (ENTER

this saves the program as a source file named MAIN/SRC. (The Editor changes
the top right-hand corner display to MAIN/SRC.) Clear the edit buffer by typing:
K

the kill command and answer Y to the prompt. The screen will then clear.
Now repeat the same procedures for inserting and saving MOD4, MODIII,
PROG4, and PROGIII. (If you have a Model 4, insert all of these programs on

your Model 4 — even MODIII and PROGIII. Otherwise, insert all of these
programs on your Model IIL.)

2. MOD4 Program

MoD4 POECT iModel 4 Print Routines
PUBLIC PRINT»TRSDOS

BDSPLY EQU 10

BEXIT EQU 22

PRINT INC HL
sUC BDSPLY iDisrlay Line
RET

TRSDOS LD HL 1@
JP BEXIT SExit
END

3. MODII Program

MODIII RSECT iModel IIT Print Routines
PUBLIC PRINT:TREDOS

YDLINE EQU @21BH

JP2DOS EQU 402DH

PRINT INC HL
CALL UDLINE iDisplay Line
RET

TREDOS JP JP2D0OS FExit
END

SAMPLE SESSION

4. PROG4 Program

PROG4 PSECT iModel 4 LinKing Prodram
EXTERN BEGIN

START JP BEGIN
LINK ‘MAIN/REL ilLinks Main Prodram
LINK ‘MOD4/REL ! il.inks Print Routines
END START

5. PROGIII Program

PROGIII PSECT iModel III LinKing Prodram
EXTERN BEGIN

START JP BEGIN
LINK ‘MAIN/REL iLinks Main Prodram
LINK 'MODITI/REL’ ilLinks Print Routines
END START

When you have finished inserting all five source files, exit the Editor by typing:
0
which returns you to TRSDOS Ready.

Assembling a File

You should now have stored five source files:

MAIN/SRC
MOD4/SRC
MODIII/SRC
PROG4/SRC
PROGIII/SRC

To see that they are all on your diskette, check the disk directory by typing
DIR (ENTER).

These files contain three types of instructions:
» 780 mnemonics (LD, CALL, INC, and RET), which the Assembler converts
into Z80 object code. Chapter 9 describes Z80 mnemonics.

* An extended mnemonic (SVC), which the Assembler converts into a group of
Z80 instructions. Chapter 1@ describes extended mnemonics.

« Directives (PSECT, EXTERN, DEFT, PUBLIC, EQU, LINK and END), which
are instructions to the Assembler or the Linker. Chapter 8 describes directives.

To assemble the source files, use the ALDS Assembler (ALLASM). In the
TRSDOS Ready mode, type:

ALASM MAIN/SRC MAIN/REL (ENTER

MODEL (li/4 ALDS

The assembler processes the source file MAIN/SRC into an object file named
MAIN/REL. If it displays any errors, edit or re-insert MAIN/SRC and re-
assemble it. (An explanation of the Assembler error messages is in the Error
Messages Section of this manual.)

You can assemble the other source files in the same way.

Note: You can omit the /SRC and /REL extensions. The Assembler knows to
append them:

ALASM MOD4 MoD4
ALASM MODIII MODIII (ENTER
ALASM PROG4 PROGY
ALASM PROGIII PROGIII

When finished, the Assembler produces these object files:

MAIN/REL
MoD4/REL
MODITI/REL
PROGA/REL
PROGIII/REL

The extension REL means that the files are relocatable. That is, they do not have
absolute load and execution addresses. Because of this, they cannot be loaded
and executed in their present form.

The Assembler converts them into relocatable rather than absolute files because
of the PSECT directives. See Chapter 8 for more information on the directives.
See Chapter 3 for information on operating the Assembler.

Linking a Relocatable File

Two of the relocatable files created by the Assembler are:

PROG4/REL
PROGIII/REL

which consist solely of LINK directives. They are for the ALDS Linker to
process. Type:

ALLINK PROG4/REL PROG4A $=5200 (ENTER
This causes the Linker to:

(1) process the LINK directives, LINKing MAIN/REL and MOD4/REL to
PROG4/REL.

(2) assign absolute addresses beginning with 5200H to PROG4/REL.
(3) save the resulting absolute object code PROG4.

You can link PROGIII/REL in the same way. (Notice that you can optionally omit
the /REL extension, since the Assembler will automatically append it.) Type:

ALLINK PROGIII PROGIII $=5280

SAMPLE SESSION

Using the same processes as above, the Linker creates PROGIII, an absolute
object file, composed of MAIN/REL and MODIII/REL.

Chapter 5, The Linker, discusses the Linker itself. Chapter 8, Directives,
discusses the directives which control the Linker.

Executing a File

The Linker created two absolute object files:

PROG4/CMD
PROGIII/CMD

which are actually two versions of the same main program. PROG4/CMD runs
on the Model 4; PROGIII/CMD is for the Model III. (Model III and 4 executable
programs must have the /CMD extension.)

Assuming you created these files on the Model 4, if you wish to run PROG4/
CMD on your Model 4, simply type (in the TRSDOS Ready mode):

PROG4 (ENTER

Transferring a File

You will, of course, need to transfer the program which does not correspond with
your computer to the model in which it can be used, before you can execute it.
For example, if PROGIII was created on the Model 4, it would need to be
transferred to the Model III. If you have a Model III and 4 and an appropriate
modem or cable, you can transfer the program with the ALDS File Transfer
System. It will produce a Model 1II or 4 disk file of PROGIII/CMD or PROG4/
CMD.

To transfer PROGIII/CMD to a Model 111, use the following instructions:

Connect the two systems (see Chapter 6, The ALDS File Transfer System for
instructions).

Load the ALTRAN program on both the Model 1II and Model 4 by typing:
ALTRAN

After ALTRAN displays its menu, type:

9

This puts you in the ‘Mini-Terminal’ mode. To test the communication of your
computers, on your Model 4 type:

COMMUNICATION

MODEL lil/4 ALDS

This word should appear on your Model III screen as well as your Model 4
screen. Next on your Model III type:

TEST

This word should also appear on your Model III screen and your Model 4 screen.
If both computer screens have *“COMMUNICATION TEST”* written on them,
then ALTRAN is communicating in both directions. Otherwise, recheck your
connection procedure (see Chapter 6, The ALDS File Transfer System).

Press the (=) key on both the Model III and 4 to return to the ALTRAN menu.
On the Model 4 type:

1 (ENTER
PROGIII/CMD (ENTER

and on the Model I1I type:

2 (ENTER
PROGIII/CMD (ENTER

This transfers PROGIII/CMD to the Model I diskette and names it PROGIIl/
CMD.

ALTRAN re-displays its menu when it has finished the transfer. Press or
to exit the ALTRAN program and return to TRSDOS Ready. You can then
execute PROGIII on the Model 11 in the same way PROG4 was executed on the
Model 4 above. Type:

PROGIII (ENTER

Debugging a File
You can debug any of the object files with the ALDS Debugger on the Models III
and 4. On your Model III type:

LOAD PROGIII/CMD (ENTER
ALBUG (ENTER

You can now debug PROGIII/CMD by entering:
J
On your Model 4 type:

LOAD PROG4/CMD (ENTER
ALBUG

You can now debug PROG4/CMD by entering:
J

SAMPLE SESSION

Answer the corresponding prompt with the following response:

Model I1I:
J [ADRICBPIILBPZILBPIILHBPAT <E»? 5200,5200 (ENTER)
Model 4:

J [ADRILBP11L,BP21L,BP31L,BP4] <E>? 5200,5200 (ENTER
You can now single step through the program by pressing (B).

For more information on ALBUG, refer to Chapter 4.

EDITOR

Chapter 2/
The ALDS Editor (ALEDIT)

The ALDS Editor allows you to enter and edit an assembly language source
program. You can save this program on disk as a source file to be assembled into
2380 object code.

This section describes the use of the Editor itself. For information on how to
write an assembly language source program, see Section II, “ALDS Assembly
Language”

Loading the Editor

This command, typed in the TRSDOS Ready mode:
ALEDIT source filespec

loads the Editor and then loads the specified source filespec into the Editor.
The source filespec is optional. For example:

ALEDIT (ENTER
causes the Editor to load and display a similar heading:

TR5-B@ Model 4 Text Editor Wersion vrp.
Corvridght (c) 1982, 83 Tandr Core,

(v.r.p. is the version, release and patch numbers.)
ALEDIT SORTER (ENTER

causes the Editor to load, display the above heading, then load a source file
named SORTER/SRC.

If the source filespec does not contain an extension, the Editor appends /SRC
to it.

The Editor loads into all of the memory above TRSDOS. It reserves
approximately the top 33K bytes in a Model III and the top 40K bytes in a Model
4 as an “‘edit buffer” for inserting your programs. However, if you have also
loaded one of the High Memory TRSDOS utilities the edit buffer will be smaller.

11

MODEL lil/4 ALDS

Using the Editor

The following pages define the three modes in which you can use the Editor:

¢ the command mode
e the insert mode
o the line edit mode

The Command Mode

When you first load the Editor, it is in the command mode. While in this mode,
you can use any of the special keys listed in Table I or the commands listed in
Table 2.

All commands except I and E return to the command mode after executing. To
return to the command mode from I (insert mode) or E (line edit mode), press

BREAI) or (ENTER) respectively.

When you enter an Editor command, it creates a blank “work line” and points to
the line just beneath it. To redisplay the screen after an error message and delete
the work line, use the N command.

Sample Use

For an example of using the command mode, use the I command to insert this
program:

JTHIS IS THE FIRST LINE
iTHIS IS THE SECOND
JAND HERE 15 ANOTHER (ENTER
JAND ANOTHER

(®) END

Press (BREAK) to return to the command mode.

You can move the cursor and rearrange the lines of the program. For example
type the following Editor command:

T

the cursor moves to the top of the text. Type B to move it to the bottom. Press (=)
and (®) to move it to specific lines.

Move the cursor to the third line and type:
1

The << appears to the left of the line. This specifies the beginning of a block.
Move the cursor to the fourth line and type:

2
¥

12

EDITOR

The > appears to the left of the line. This specifies the last line in the block.
Move the cursor up to the second line and type:

0

which is the O command. This copies the block between the first and second
line. Move the cursor to the next to last line and type:

D

delete command (executes without pressing (ENTER)). The last line is now deleted.

To save this program on disk you can use the W command. Type (it does not
matter which line the cursor is positioned at);

W TEST (ENTER

This saves this program on disk as a file named TEST/SRC. You can exit the
Editor by typing:

O (ENTER
the quit command.

Q will exit the Editor without writing the text to disk. If you forgot to save the
text first, type ALEDIT * to re-enter the Editor. Your text will be
retained.

Be sure you use the ALEDIT * command immediately after you exit the Editor.
It will not work predictably after you run a command which modifies memory.
Also, be sure you type one blank space between ALEDIT and the asterisk(*).

Table 1/ ALEDIT Command Mode Keys

Model 4 Model Il
Keys Description Keys

® moves the cursor one position to the ©®
left.

=) positions the cursor down one line =)
(ignored if the cursor is not in the first
column)

(=) positions the cursor up one line =
(ignored if the cursor is not in the first
column)

CTRD® positions the cursor to the top of the SHIFD=®®
screen.

CTRL positions the cursor to the bottom of SHIFD=®
the screen or to the first line after the
last line of text.

® displays the current line sequence)
number. This number will change as
you insert and delete lines.

13

MODEL lil/4 ALDS

#line(ENTER) positions the cursor to the specified #line(ENTER)
line sequence number and moves
that line to the top of the screen.

cancels any command being BREAK
executed and returns to the command
mode.

SHIFD (=) cancels the current command line if

you have not yet pressed (ENTER).

Table 2/ ALEDIT Editor Commands

Description of Terms

current line
the line where the cursor is currently positioned.

del

{stands for delimiter) One of the following characters which marks the
beginning and ending of a string:

#8%& ()" + ,-./1;<=2>7

string

one to 37 ASCII characters on the Model 4 and one to 29 ASCI| characters
on the Model lli.

text
the source program or text currently in RAM.

A
Re-executes the last executed command. This command only works with the
Editor Commands C, F, X, L and W.

B
Moves the cursor to the bottom of the text.

C del string1 del string2 del occurrence

Changes string1 to string2 for the number of occurrences you specify.
Occurrences must range from 1 to 255. The changes begin at the current
line and are made only to the first occurrence on a given line.

If you omit occurrence, only the first occurrence of string1 is changed. You
may specify occurrence with an asterisk, in which case the change is made
to the first occurrence of string1 in all the remaining lines.

For example:
C/TEXT/FILE/3
changes the first 3 occurrences of TEXT to FiLE.

14

EDITOR

C?TEXT?FILE?” (ENTER)

changes all occurrences of TEXT to FILE. (Change acts on only the first
occurrence within a line.) After executing the command, the cursor positions
itself at the last change or, at the top of the file if changes went through the
whole file.

D

Deletes the current line or block of lines. To delete a block, position the
cursor at the first line in the block and type (1. Then position it at the last line
and type the D command. (The block may be on several pages.) The cursor
must be positioned on a line within the file.

For example:
LD AB
@ ADD Al
ADD A3
)] ADD A4
DEC B
deletes all but the foliowing:
LD AB
DEC B

You can cancel a block deletion after pressing (@ but before typing D. To do
this, press (3.

E

Allows you to edit the current line using line edit mode subcommands. The
line will appear in reverse video (Model 4 only). See the edit mode for a
listing of subcommands.

F del string del occurrence

Finds the specified occurrence of string. If you omit occurrence, finds the
first occurrence of string. If you omit string, the last string specified is found.
Occurrences must range from 1 to 255. For example:

F/ITEXT/2

finds the second occurrence of TEXT.

F/TEXT/ (ENTER)

finds the next gccurrence of TEXT.

F

finds the next occurrence of the last specified string.
F% %

finds the next occurrence of five blank spaces. The Editor will search for only
one occurrence of the string in each line.

15

ODEL lii/4 ALDS

G
Deletes all text from the current line to the end. You will first be prompted
with:

“Are you sure?”
Type Y to delete; N to cancel.

H

Prints the entire text if entered as the first command or the specified block on
the printer. To print a block, move the cursor to the first line of the block and
type M. Move the cursor to the last line of the block and type ®. For
example:

LD AB

@ ADD Al
ADD A3

® ADD A4
DEC B

prints a block of ADD instructions.

You can cancel a block printing after pressing (1) but before typing H. To do
this, press 3.

Press to terminate printing. If the printer is off-line or goes off-line
during printing, some characters may be lost.

!
Enters the insert mode for inserting lines just before the current iine. See
“Insert Mode” for more information.

J

Displays current size of text and how much memory remains. Memory size
does not include a small work area when the buffer is full, but the text size
may reflect some of this work area.

K

Deletes ALL text. (Does not delete text from the disk file, only from the edit
buffer. Before deleting your text, the Editor will ask you “Are you sure” Type Y
to execute the command; N to not execute it.

L filespec $C

Loads filespec into the Editor. $C is optional. If specified, the Editor chains
the new filespec to the end of the text currently in memory. If not specified,
the new filespec overlays the current text.

For example:
LTEST
loads TEST/SRC into the Editor.

16

EDITOR

LTEST $C
chains TEST/SRC to the end of the text currently in memory.
The Editor will load fixed length record (FLR) files with a record length of

one. If the file is fixed length, each line must be ended with a carriage return.

Note: When the Editor completes, the record length will be 256.

M
Moves the specified block just ahead of the current line. Use @ and @

to specify the block. The Editor displays a line count as it moves each line.

For example:
ADD AB
@ PUSH DE
PUSH HL
PUSH Y
@ PUSH BC
LD A8
()] ADD A10
moves the block of PUSH instructions just ahead of the last line:
ADD AB
LD A8
PUSH DE
PUSH HL.
PUSH Y
PUSH BC
ADD A0

You can cancel the block after specifying it but before typing M. To do this,
press 3.

N
Updates the display. You might want to use this after executing the J
command or cancelling the G command.

o)
Copies the specified block just above the current line. (Use (D and @
to specify a block as described in the M command.)

P
Moves the cursor to the next page (which is 24 lines from the top of the
screen on the Model 4 and 17 lines on the Model 1H).

Q

Exits the Editor. If you forgot to save the file first, type ALEDIT *
immediately upon exiting the Editor. The Editor will load with your text
retained in memory.

17

ODEL lil/4 ALDS

R

Deletes the current line and enters the insert mode. Using the J command, if
there is 0000 memory left in the buffer, executing the R command will delete
the line but will not allow it to be replaced with new text.

T
Moves the cursor to the top of the text.

U
Moves the cursor to the previous page (which is the 24 preceding lines for
Model 4 and 17 lines for Model 1ii).

\
Scrolls current line to the top of the screen.

W filespec $optionT ...

Saves all text on disk as filespec. filespec is optional; if omitted, it is the
filespec you used to load the file. The Editor appends /SRC to filespec
unless it already includes an extension.

The options are:

E Exits the Editor after saving the file unless there is an
error.
L, ML, OR LM Saves the file with line numbers in this format: ASCIl

line number/dummy TAB/text.

M Saves the file as a fixed length record (FLR) file with a
LRL of 256 in this format:

text/carriage return

This option is the default. You can use ALEDIT to edit
a “DO-file” created with the TRSDOS “BUILD"
command and save this format, which can be loaded
by the TRSDOS “DO” command.

For example:

W SAMPLE

saves all text as a file named SAMPLE/SRC.
W SAMPLE $E

saves text as SAMPLE/SRC. The Editor will exit back to TRSDOS Ready
after saving the file.

Without using the L or the M options, the Editor saves the file in the format
required by the ALDS Assembler:

» Each character is saved exactly as it appears on the display.

» No carriage returns or end of text code is saved.

18

EDITOR

« Each line is saved in this format: length/text/
X del string1 del string2 del occurrence

Same as the C command, but prompts before making the change.
Occurrence must range from 1 to 255.

The Insert Mode

The I command gets you into the insert mode. Type:

I

(Do not press (ENTER).) The editor clears the screen and positions the cursor at the
upper left-hand corner. You can now insert source lines into the edit buffer.

Do not use line numbers. The Assembler will consider them syntax errors.

Each source line may have up to 78 characters. After typing the line, press
ENTER) to insert it. To cancel it and return to the Editor command mode, press
BREAK). For example:

$THIS I8 THE FIRST LINE (ENTER
FTHIS IS THE SECOND (ENTER
JAND HERE IS ANOTHER (BREAK

inserts only the first two lines in the Editor’s memory; then returns to the Editor
command mode.

While inserting lines, you might find it convenient to use the (8) key. This key is
used as a tab key. The Editor has tabs set every eight columns.

The Editor offers certain control functions for quick insertion. To activate a
control function, press the on the Model 4 or (=) on the Model III,
at the same time you press the function key. For example, pressing these keys at
the same time:

Model 4: CTRDD)
Model I1I: SHIFD=)D)

causes the Editor to insert a semicolon and the current date in the text and then
position the cursor on the next line.

Model 4: ©TRDE)
Model I1I: SHIFD(=)(E)

causes the Editor to insert **:”) tab to the next tab stop, insert “‘EQU’} and then
tab again to the next tab stop.

If the line becomes full while inserting the control function, the Editor stops and
awaits the next insert mode instruction.

19

MODEL ili/4 ALDS

Table 3 lists all the insert control functions.

Table 4 lists the special control keys available in the insert mode.

Note: When the edit buffer is full, it will give you a buffer full message and
return to the command mode.

Table 3/ ALEDIT Insert Control Functions

Model 4 Model Ii}
FUNCTION INSERTS FUNCTION
(AL ;current date SHIFD=D
(i.e. ;02/25/83 (ENTER)
CTRD® MEQU® SHIFD(=)(E®)
CTRL® GLOBAL SHIFN®®
® INCLUDE &) SHIFT
CTRL® (M ENTRY: (@) SHIFD=®
CTRD@ { (open braces) SHIFD(=)0)
CTRDP) @ PUBLIC® SHIFD=)P)
CTRD@ } (closed braces) SHIFT =@
CTRD® ;@ EXIT: @ SHIFD=)®)
CTRU® JreEEReo SHIFD=®
(semicolon followed by 64 asterisks)
CTRL - SHIFD=)®D
CTRD® (M USES: @ SHIFN=
CTRDW [SHIFD(=W
CTRLD @ EXTRN SHIFD(=®
CTRLY displays the tab positions. Nothing is SHIFT
inserted.
CTRL e —— ... (ENTER SHIFD=D
(semicolon followed by 64 dashes)
(CTRDSHIFD(E B SHIFD(=)®
CTRD] GHIFD= ()

20

EDITOR

Table 4/ ALEDIT Insert Mode Special Keys

® moves cursor back one space and deletes a character

ends current line, carriage return, and goes to next line still in
“I" mode. Note: inserts a blank line if executed by itself.

cancels current line, and returns to CMD-mode with the cursor
on the next line.

® moves to next tab position on the line. Note: (Owill reverse
tab.

The LINE EDIT MODE

The E command enters the line edit mode for editing characters within the
current line. When you enter this mode, the Editor displays the line in reverse
video on the Model 4 only. You can then use any of the edit subcommands listed
in Table 5 or the special edit keys listed in Table 6.

For example, assume the cursor is on the following line:

iTHIS IS THE FIRST LINE

To change the word FIRST to THIRD from the command mode, type:
E

(Do not press (ENTER).) The Editor will display the line in reverse video (Model 4
only). You are now in the line edit mode.

Use the (SPACEBAR) to position the cursor at the F in FIRST and type:
SCTHIRD {(ENTER
This stores the change and returns to the Editor command mode.

Table 5/ ALEDIT Line Edit Mode Subcommands
COMMAND DESCRIPTION

A Clears all changes and re-enters the edit mode for the
current line.

nCstring Changes the next n characters to the specified string. If n
is omitied, only one character is changed. (Press
to exit the change early.)

nD Deletes n characters. If n is omitted, one character is
deleted.

E Exits the edit mode and stores changes.

Hstring Deletes the remaining characters, enters the insert mode

and allows you to insert a string.

21

MODEL lil/4 ALDS

Istring

nKcharacter

L
Q
nScharacter

Xstring

Allows you to insert material beginning at the current
cursor position on the line. Pressing (4) will delete
characters from the line. The line may be up to 78
characters in length on the Model 4 and 61 characters
in length on the Model L.

Kills all characters preceding the nth occurrence of the
character.” If n is omitted, the first occurence is used. If
no match is found, the rest of the line is killed.

Moves cursor to beginning of line.
Quiits the edit mode, cancelling all changes.

Positions the cursor at the nth occurrence of character.* If
no match is found, positions the cursor at the end of the
line.

Moves the cursor to the end of the line, enters the insert
mode, and aliows you to insert a string.

*The compare begins on the character following the current cursor position.

Table 6/ ALEDIT Line Edit Mode Special Keys

SPAGEBAR
SHIFD(=)

@

@
ENTER

Moves cursor one position to the right.

Returns to edit command mode from the [, X, C, or H
subcommands.

Moves cursor to next tab position (or the end of the line)
while in the 1, X, or H subcommand mode.

Moves cursor one position to the left.

Identical to the E subcommand.

22

ASSEMBLER

Chapter 3/

The ALDS Assembler
(ALASM)

The ALDS Assembler produces Z80 object code. It does this by inputting a
source file — composed of Z8@ instructions, assembler language directives, and
data— and assembling it into Z80 code.

In this Section, we’ll show how to use the Assembler. For information on the
source file, see the sections on the ALDS Editor, Assembler Language
Directives, and Z80 Instruction Set.

The Assembler Command

This command, typed in the TRSDOS Ready mode, loads and executes the
Assembler:

ALASM filespecl filespec2 {switches}

filespecl is the source file you want assembled. If you do not specify an
extension, the Assembler assigns it the extension /SRC. filespecl must not be
read protected. Do not specify a password.

filespec? is optional. It stores the assembled object code. You can specify
filespec2 with an asterisk (*). If so, the Assembler assigns it filespecl’s name
(less the extension).

If the program is relocatable and filespec2 does not have an extension, the
Assembler assigns it the extension /REL. (The Assembler uses the PSECT
directive, discussed in Chapter 8, to determine whether the program is absolute
or relocatable.)

filespec2 overrides any OBJ directive you have in your program. filespecl and
filespec2 must be in the standard TRSDOS filespec notation.

Examples:
ALASM TEST TEST (ENTER

assembles TEST/SRC and saves the object code as TEST if the program is
absolute or TEST/REL if it’s relocatable.

ALASM TEST * (ENTER

does the same.

23

MODEL lli/4 ALDS

ALASM TEST/PAY *

assembles TEST/PAY and saves the object code as TEST or TEST/REL.
ALASM TEST/PAY FILE/ACC

assembles TEST/PAY and saves the object code as FILE/ACC.

ALASM TEST

assembles TEST/SRC. No object file is produced unless TEST/SRC contains an
OBJ directive.

Switches

You may specify one or more switches to create a listing or control the assembly
output. If you do not specify filespec2, you must enclose the switches in
parenthesis. For example:

ALASM TEST * L (ENTER

assembles TEST/SRC into TEST or TEST/REL and displays a listing (L) of the
assembly.

ALASM TEST # LXP (ENTER

does the same as the above and also creates a cross reference listing (X) and
prints it all on the printer (P).

ALASM TEST (L) (ENTER

assembles TEST/SRC and creates a listing. Since filespec? is omitted, the
parenthesis are required.

The details of all the available switches are in Table 7:

Table 7/ ALASM Switches

L (Listing)
Generates a complete listing on the video display Figure 1 shows a sample
assembly listing on the Model 4.

The Assembler prints a character to the left of a line number if the line is
affected by one of these special conditions:

Character Condition

the symbol in symbol field is never referenced

the symbol in symbol field is PUBLIC

the symbol in symbol field is GLOBAL

a symbol in operand field is defined in giobal file

a symbol in operand field is defined in an external file
some or all the object data is relocatable

= X +@Q'C ¢

24

ASSEMBLER

X (Cross Reference)
Generates an alphabetical cross reference listing of all symbols defined in
the program.

P (Printer)

Outputs the listing on the printer in addition to the video display. Use this
option with the L option. You may not use this switch with the Assembler D
switch, nor can you use it with the TRSDOS SPOOL command’s “capture
file” option (the “N” option). Be sure that the printer is on-line.

W (Wait On Errors)
Causes the Assembler to stop the listing at each assembly error. Press
to continue the listing.

T (Truncate the Listing)
Truncates the listing output to the printer so that you can use 80 column
paper.

Ddrive number (Store Listing on Disk)

Stores the listing in a disk file named filespec1/LST. Use this option with the
L option. If the listing will not fit on the diskette, the Assembler closes the file
and prompts you to change diskettes. Do so and press (ENTER). (Be sure the
diskette you remove does not contain the source, object, ALASM files or
important data.)

The Assembler stores the remainder as filespec1/LSU on the newly inserted
diskette. If this diskette also becomes full, the listing goes to the next diskette
as filespec1/LSV.

The Assembler repeats this process until it has saved the entire listing. Each
time it creates a new listing file, it will increment the third character in the
extension:

filespec1/LST, filespec1/LSY, ... filespec1/LSZ, filespec 1/L.SA, filespeci/
LSB, ... filespec1/LSS

You may optionally omit the drive number. If you do so, the Assembler
outputs the listing file to the lowest numbered write-enabled drive (usually
drive 0) and continues the listing in the next drive. This is not a good method
1o use, since the Assembier might run out of work space before completing
the listing.

Files created with the D option should be printed with the LIST command.
The D switch overrides the P switch.

G (Go)
Executes the program after assembling it. The program must be absolute
and have no errors.

25

MODEL Ili/4 ALDS

F (Memory image)

Causes the assembled object file to be in memory image form, rather than
the TRSDOS program file format. The program must be absolute and have
no errors. See the NOLOAD directive in Chapter 8 for more information.

Examples:
ALASM SOURCE OBJTST LDX

assembles SOURCE/SRC into OBJTST/REL or OBJTST. Displays a listing
and a cross reference of this assembly and saves these in one or more files
named SOURCE/LST, SOURCE/LSU, SOURCE/LSYV, etc.

ALASMTEST " G

assembles TEST/SRC into TEST or TEST/REL, then executes the program
(uniess it is relocatabie or has errors).

ALASM MOD1 PROG/CMD LPW

assembles MOD1/SRC into PROG/CMD and generates a listing which is
printed on the video display and the printer. Each time the Assembler
encounters an error, it stops the listing.

ALASM XYZ/COD TST/ABC:2 LD3

assembles XYZ/COD and stores it as TST/ABC on the diskette in drive 2.
The Assembler generates a listing which it displays and saves as XYZ/LST
on the diskette in drive 3. If the drive 3 diskette becomes full, the assembler
prompts you to insert another diskette to hold XYZ/LSU, a continuation of the
listing.

Note: Be sure the CLOCK is not turned on (CLOCK (OFF)) while running the
Assembler.

26

ASSEMBLER

Tandy Coreps ALDS ALASM corr., 1898B2,83 v.,03.02

Source=TEST/SRC ObJect=TEST

Pass Nos+ 1 Comprlete

2000 noeD! iTHIS IS THE FIRST LINE
oo’ opeoz FAND HERE IS ANOTHER
)l 20003 FAND ANOTHER

poeod’ 00004 iTHIS I8 THE SECOND
)l opeas JAND HERE IS ANOTHER
apoe”’ [ulnXrdulcs END

No Assemhly Errors

Time=0:01
Brtes=0
Lines=06

Pass No. 2 Complete

Figure 1

@7/@1/83

27

DEBUGGER

Chapter 4/
The ALDS Debugger

The ALDS Debugger is an easy-to-use system for debugging absolute object
code programs. It includes all the features found on the DEBUG utility program
of your TRSDOS disk. In addition, it includes several new, powerful debugging
tools.

The Model III and Model 4 Debugger are on your system diskette in the module
ALBUG/CMD.

Note: This module resides in all memory above EOOOH (57344 decimal),
therefore it cannot be used by programs which exceed this amount. This also
means ALBUG should not be used on the Model III within a DO file, or on the
Model 4 when certain high memory drivers are loaded.

Among many other features, the ALDS Debugger allows you to:

* set both permanent breakpoints with pass counts and temporary breakpoints
(see the J and B commands in Table §8).

* execute one or more instructions at a time (see the I and E commands in
Table 8).

* specify a memory address as an offset. This is useful in debugging a program
which you assemble in the relocatable mode (see the O command in Table §).

What you can debug with the ALDS Debugger:

You can debug any absolute program. The program must lie in memory between
5200H and DFFFH on the Model III and between 3000H and DFFFH on the
Model 4.

In addition, you can use the Debugger to change the contents of disk files, using
the DISK ZAP mode (see the Z command).

Loading The ALDS Debugger

To use the Model III or Model 4 Debugger you must first load the program that
you wish to debug with the TRSDOS LOAD command. Refer to your TRSDOS
III or 4 Disk System Owner’s Manual for more information. For example type:

LOAD filespec
Next you must turn on the ALDS Debugger by typing:
ALBUG

29

MODEL lil/4 ALDS

The Debugger display appears on your screen and you are now in the Debugger
command mode. You can use any of the commands listed in Table 8. In order to
begin debugging or executing your program, you must change the PC register to
the address of the beginning of your program by using the “R’’ command.

If you wish to enter the Debugger without loading one of your programs (i.e. to
enter the DISK ZAP mode), from the TRSDOS Ready mode type:

ALBUG (ENTER

The Debugger begins execution.

The Debugger Display
This is a sample Debugger display.

- @1 23 45 67 89 AB LD EF 0123456789ABCDEF
U>5200: 0000 0000 Q00D 0Q0D POOD Q002 Q0BG QBRAAD +vvvir v
g 5210: 0000 000D 2000 QVOO CDOD QOOD QODD PBAD vty
_ @1 23 45 B87 89 AB CD EF 0123456789ABCDEF
L>6000: 0000 0000 2000 0000 DOD0 DQCD Q0@ VOBA® vy
@ GO10: Q000 OPRD Q20D 002R Q000 DPRO QOGO DOBE v veveeinrieey

p1 23 45 B7 89 AB COD EF B123458789ABCDEF
T{=5P-1: 9003 1007 BOF8 CAEA 9003 1000 CEEY SOE3 Gevvrrees i Porsos
@‘____m_sp=>: CSE5S 78EG @707 21DF @34F 7BOG BROI AEZ3 +eXevs!esOxos Ne
AB CD EF ©1 23 45 67 B8 9 ABCDEFD123456789
@ __@PC=»: 3E93 EFE1 FS3E 9GEF 5379 7374 B56D 2045 >..4i>.System E
—_— %

©H AF BC DE HL. IX Iv gPp PC @PC DISASSEMBLY
@85C 0420 @QEQ® 0423 FFFF DFDD @3A0 1AFA LD A93H
($-ZHP--2 BP1=0FF BPZ=0FF BP3=0FF BPd=0F’FI

©

Figure 2

Refer to Figure 2 for reference to the following explanations:

1. Upper Dump. This is a 32 byte section in the memory. U stands for Upper
Dump. The 5200 signifies that the memory address of the first byte in that
row is 5200H. When you load ALBUG this address is automatically set to
3000H on the Model 4 and 5200H on the Model I1I. To the right of the 5200
are the contents of memory locations 5200H through 520FH. To the right of
the 5210 are the contents of memory locations 5210H through 521FH. Above
these lines are numbers which represent the memory address of the data
listed below them. For example, the byte under the 7 and in the row marked
as 5200, is the memory location 5207H.

2. Lower Dump. This is another 32 byte section of memory. It is arranged
exactly like the Upper Dump, except that it is originally set to 6000H on the
Model III and 3000H on the Model 4.

3. The memory location pointed to by one of the register pairs (in this case SP)
is displayed here along with the 15 bytes immediately following it. The label
of this line is SP = > Directly above it is a line labeled <<SP-1. It contains
the 16 bytes preceding the memory location pointed to by the register pair.

30

DEBUGGER

10.

(The byte on the far left of the line is at the address (SP)-16 and the byte on
the far right is at the address (SP)-1)

. The memory location pointed to by the PC is on this line, marked @PC = >.

It is followed by the contents of the next 15 bytes in memory. Above this line
is the memory location of the respective bytes.

. This line (here shown blank) displays certain information such as base

register addresses and math function results. When you enter a new
command, it is erased.

. These lines show the contents of the Z80 registers. At the right side of the

lower line, below “@PC DISASSEMBLY”, is a Z80 instruction. The address
pointed to by the PC contains this instruction in machine code, and the
Debugger has disassembled it into an assembly level instruction. The
Debugger uses as many bytes following the PC address as necessary to make
a complete instruction. This means that what is disassembled can be one to
four bytes long.

. <SZHPNC> are the condition codes set in the F register. The codes are:

sign

zero

half carry
parity

BCD condition
carry

QZTIN®m

When a condition bit is set (i.e. when it is equal to 1) the Debugger encloses
the letter within the < > characters. Otherwise it simply displays a hyphen
(-). For example, <-Z---C> shows that the zero (Z) and the carry (C) bits
have been set and all other bits have not.

. This area lists the status of the permanent breakpoints. BP1 = 5200/000C

translates as breakpoint 1 set at 5200H with the pass counter set at 12
decimal passes. BP2 = OFF means that breakpoint 2 is not set. (See Table 8
for more information).

. When you first enter the Debugger, this line gives version and copyright

information. Thereafter, it displays commands and prompts used in
debugging code.

This area displays the ASCII value of any hexadecimal data to its left. If the
hex number has no printable value, a period (.) is displayed.

Entering Commands

Table 8 lists all the Debugger commands. You can execute most of them by
simply pressing the appropriate letter. By pressing (BREAK), you can abort any
command in the middle of execution and return to the command level.

31

MODEL Ilil/4 ALDS

Most commands prompt you to specify a register or data (the prompt is in area 9
of Figure 2). The prompts use these abbreviations:

Adr Address

Asc ASCII

BP1 Breakpoint 1
CHR Character
C(r) Clear

DEC Decimal
<E> ENTER

Eadr End address
H{ex) Hexadecimal
Pas Pass counter
Reg Register
SAdr Start address
Str String

The commands usually prompt you for a certain number of parameters. If you
fail to provide enough parameters, or if you use an invalid number as a parameter
(e.g. hex when a decimal number is expected), you receive the message:

Illegal Parameter

and the Debugger returns to the command mode.

Specifying Registers

Certain commands require you to input a register or register pair. For example,
the Debugger might prompt you with:
CoE+LACE) 4BAC) sDCE)Y yHL)Y s (DX, (DY 4G(P) or P(C)

To enter a single register, you simply press the appropriate letter. To enter a
register pair, you must press the letter NOT shown in parenthesis. For example,
(© enters the C register, but (B enters the BC register pair.

Specifying Data
As a Constant

Some commands require constants. When entering a hexadecimal constant, you
must follow it with H. For example, ‘10" indicates the decimal number 10,
while *“10H’’ stands for the hexadecimal number 10 (the decimal number 16).

As an Address

Other commands require addresses. These must be in hexadecimal. There is no
need to follow hex addresses with an H.

You can specify an address by referring to a register pair which contains that
address. For example, if BC contains the number 6000H, you can enter $B

32

DEBUGGER

instead of the address 6000H. The register abbreviations for this type of
addressing are:

AF $A
BC $B
DE %D
HL $H
IX b
LY $Y
5P $5
PC %P

You can also specify any address as an “‘offset” to a base register. This is useful
if you assemble the program in the relocatable mode. It allows you to use a
relocatable location to specify an address. (See the O command in Table 8).

The ALDS Debugger is for debugging your own code. Hence, you cannot enter
an address which is in the system memory (i.e., below 3000H on the Model 4 or
5200H on the Model III). In addition, the Debugger protects itself by not
allowing you to interfere with the memory above EQOOH on the Models I and 4.
If you enter an invalid address the Debugger returns to the command mode.

Breakpoints

The Debugger allows you to set ‘‘breakpoints’’ within your code. Breakpoints are
commands causing the execution of your program to stop at a given point. There
are two types of breakpoints, temporary and permanent.

You can assign temporary breakpoints with the J command (Jump to an address
and execute). They apply only to this one execution of J. With them you can
execute a short section of code, or determine which way control goes at a branch
statement. (See the J command in Table 7).

With the B (Breakpoint) command, you can set permanent breakpoints. They
remain in your program until you leave the Debugger or clear them. Permanent
breakpoints may have a pass count associated with them.

You must be cautious when setting breakpoints. Set them only at the first byte of
an instruction. If you are writing a self-modifying code where the first byte of an
instruction may change during the course of running the program, be careful not
to place a breakpoint at that instruction.

Another point of caution: If you return to TRSDOS Ready other than through
the Q(quit) command, the breakpoints will not automatically clear. If you return
to ALBUG without reloading your program, the breakpoints will still be there,
although they will not be displayed in the display area. You must personally reset
them by using the M(modify memory) command.

33

MODEL lil/4 ALDS

Table 8/ Debugger Commands

n; (semicolon)

Advances the memory location of the Upper Dump. The default advance is
16 bytes. You can precede the semicolon with n, a decimal number, which
changes the default to n bytes, until you press BREAK), when the default
returns to 16 bytes.

n+ (plus)

Advances the memory location of the Lower Dump. The default advance is
16 bytes. You can precede the plus sign with n, a decimal number, which
changes the default to n bytes.

n— {(minus)

Decrements the memory location of the Upper Dump. The default
decrement is 16 bytes. You can precede the minus sign with n, a decimal
number, which changes the default to n bytes.

n= (equal sign)

Decrements the memory location of the Lower Dump. The default decrement

is 16 bytes. You can precede the equal sign with n, a decimal number, which
changes the default to n-bytes.

B
Sets or clears permanent breakpoints and their pass counters. After you
press (B), a prompt appears:

1,2,3,4 or C(Ir)?

You can now choose to set or alter any of the four breakpoints, or clear all
four. To set breakpoint 1, for example, press (1. The Debugger prompts with:

0 <E> or [Adr][,Pas]<E>?

You can now select the address where you want the breakpoint. You must
set it at the first byte of an instruction. You can not place a breakpoint on top
of an existing breakpoint.

Each permanent breakpoint is associated with a pass counter. Pass
counters are useful to stop execution after an instruction has been executed
a given number of times. A pass count is specified by following the
breakpoint address with a comma and then the pass count value.

To set the breakpoint at 6000H, with a pass of 12 type:
6000,12ENTER

You can clear the breakpoint by entering a value of 0:
0

To clear all four of the breakpoints, press © in response to the first prompt.
The Debugger asks you:

Are You Sure (Y/N)?

34

DEBUGGER

to allow you to change your command (the Debugger accepts only Y or N).
The status of all four breakpoints is displayed in area 8 of Figure 2.

When you set each breakpoint, the Debugger saves the contents of the
breakpoint address, and replaces it with an RST 18H instruction on the
Model 4 which assembles into 0DFH or an RST 30H instruction on the
Model lIl which assembles into 0F7H. Now, in typing Y to remove the
breakpoints, the Debugger restores the memory addresses to their original
contents.

The contents of the pass counter can be updated without respecifying the
address of the breakpoint. For example, if you had previously set a
permanent breakpoint at 5200H, you can update the pass count to 24 by
typing:

24

in response to:

0<E> or [Adr][,Pas]<E>?

Whenever ALBUG executes a program instruction which is associated with a
permanent breakpoint with a nonzero pass count, the count is decremented
and execution resumes. Execution halts when a permanent breakpoint with
a pass count of zero is reached. ALBUG is designed so that once execution
is halted by reaching a pass count of zero, you may single step over a
permanent breakpoint.

The permanent breakpoint remains in the program until it is explicitly cleared
with the @ command or until ALBUG is exited with the @ command. Note: if
a return to DOS is executed in your program, the permanent breakpoints
remain intact and ALBUG can be re-entered by typing ALBUG.

ALBUG uses RST 18H instructions on the Model 4 and RST 30H
instructions on the Model lll to handie all breakpoint processing. If ALBUG
encounters an RST 18H instruction on the Model 4 or an RST 30H
instruction on the Model 1ll, which you placed in your program, execution
will halt. To resume execution, the program counter must be reset using
the ® command.

C
Copies one section of memory to another. After you press (©), a prompt
appears:

Start Adr,End Adr,To Adr <E> ?

Type the appropriate start, ending, and destination addresses. For example,
type:

5800,582F,6000

to copy the data contained in addresses 5800H-582FH to addresses
6000H-602FH.

35

MODEL lll/4 ALDS

D

Dumps the data contained in the address pointed to by a register pair in the
Debugger display. (See area 3 in Figure 2). The data on either side of this
address is aiso displayed. After you press (@), the Debugger displays:

Reg Dump B(C),D(E),H(L),(NX,(1)Y,S(P) or P(C)?
To see the data referenced by the IX register pair, respond with:

®

The screen updates to display the new dump.

nE
This command is identical to the (D command with one exception: If the
current instruction is a call the debugger executes the entire routine.

nF
Searches for a string within a given range in the memory. After you press (),
a prompt appears:

Sadr,Eadr <E> or <E>?
After you enter a valid start and end address, the Debugger asks you:
H(ex) or A(scii)?

Depending on whether you enter) or (&), the Debugger then prompts
you with:

Hex Str <E>?
or
Asc Str <E>?

When you enter the appropriate type string the Debugger searches
through the given memory for it. If the Debugger finds a matching string,
the Lower Dump is set to display this part of memory. If no match is found,
the Debugger returns to the command level.

To find the next occurence of the string, you need only to press () from the
command level and respond to the prompt with (ENTER). You can continue to
search for matching strings until you reach the ending address (EAdr) or
until there are no more string matches in the specified range.

To specify which occurrence of the string you want to find, precede the F
command with n, a decimal number between 1 and 254. For example, to
find the fifth occurrence of 1FH, start by entering 5F.

The F command will find an ASCII string of up to 24 characters or a HEX
string of up to 12 digits.

You may also specify a new range for the current string. Enter the new
range, abort the (F) command with the key at the "H(EX) or A(SCIl)?"'
prompt, and press:

F (ENTER).

36

DEBUGGER

G
Examines a 256 byte area in memory. After you press (@), a prompt appears:

U(pper) or L{ower)?

Depending on your answer, the Debugger displays the 256 byte multiple of
memory which contains the address of the Uppper or Lower Dump. For
example, if the Upper Dump starts at 5207H and you press @ and then @,
your screen changes so that it now contains a dump of memory starting with
5200H.

The <n;>, <n—>, <n=>, and <n + > commands may be used in this
display mode as they were in the partial screen display mode, except that
the vaiue of n is always rounded up to a multiple of 256.

Press to return to the regular Debugger display.

nl

The D and (® commands are ALBUG's single step instructions. The @)
command executes the current instruction in your program (the instruction
pointed to by the PC register) ALBUG then increments the PC register to the
next instructions address and returns to the command mode.

By preceding (D with n, a decimal number, you can indicate the number of
times it is to be repeated. For example, if you type:

101
the D command is executed 10 times.

There are a couple of considerations you should be aware of when single
stepping. ALBUG will not place a breakpoint in a protected area. This implies
that an attempt to single step an instruction in a protected area will cause a
jump to that instruction. Single stepping a call to a protected area will cause
the entire call to be executed at full speed. These precautions are necessary
since many of the system calls such as video and disk 1/0 will work properly
only when executed at full speed.

J
Executes a specific section of your program. After you press (), a prompt
appears:

J [ADR][,BP1][,BP2][,BP3][,BP4] <E>?

The start address (ADR) is optional. If you omit it, the execution begins at
the contents of the PC. BP1-BP4 are temporary breakpoints and are also
optional. You can include any or all of them.

The first temporary breakpoint encountered causes the execution to
terminate. This clears all temporary breakpoints. The execution also
terminates if a permanent breakpoint with a pass of zero is encountered.

37

ODEL lil/4 ALDS

For example, suppose you want to execute the instructions between 5200H
and 5221H, inclusively. After pressing (I, you would type:

5200,5221

Temporary breakpoints are often useful near branch points. If you set
breakpoints at the possible jump locations, you can see which way your
program goes. For example, say you have a set of conditional jumps which

could go to 6040H, 6080H or 60FOH. When you enter:

5800,6040,6080,60F0

your program begins at 5800, and terminate after jumping. You can then
examine the PC to see which breakpoint caused the execution to stop (i.e.,
which way the jump went).

K

Allows you to convert between decimal, hex, and ASCII characters. With this
command, you can also perform addition and subtraction. After you press K,
a prompt appears:

Enter value or equation ?

You can then enter a value or equation. For example, to find out the ASCII
character for 32H, type:

32H

The displays on the Models 4 and ill (in area 5 of Figure 2) are then:
Model 4:

HEX String = 0032 DEC String= 50 CHR String=".2"

Model lli:

HEX String = 0032 DEC String = 00050 CHR String=".2"

To do addition or subtraction, simply type in the equation. You can mix
decimal, hex, or character constants in the equation. Only single characters
are allowed, and unprintable characters are output as periods (.); all
characters must be preceded by a quote mark (”). For example, if you type
this equation:

1124-40H +"Z
the Debugger displays:

Model 4:
HEX String=047E DEC String= 1150 CHR String="."

Model ill:
HEX String = 047E DEC String= 01150 CHR String="."

the result must lie between 0 and FFFFH, or else the number is represented
modulo FFFFH. For example, -1H is represented as FFFFH, and 10001H as
1H.

38

DEBUGGER

L
Loads a given range of memory with a constant value. After you press (L), a
prompt appears:

SAdr,EAdr, Value <E> ?

When you enter a start address, end address, and value, the area in memory
is filled inclusively with the value. For example:

6000,6FFF,FFH(ENTER)
fills addresses 6000H to 6FFFH with FFH.
6000,6FFF,16(ENTER)

fills addresses 6000H to 6FFFH with 10H (the hexadecimal equivalent of
decimal 16).

M
Changes values in user memory. After you press ®), a prompt appears:

Address =7

Enter a hexidecimal address and press (ENTER). The Debugger then displays
a 256 byte block of memory and puts the cursor on the specified memory
location. The numbers along the left-hand side are the memory addresses
for the first byte in their respective lines. You may reposition the cursor with
the up, down, left, and right arrow keys when entering data. Press o
return to the debugger display.

N
Toggles the Debugger display between the primed and unprimed register
set.

o)

Sets values for offset base registers. You can use these offset registers for
debugging a program you assembled in the relocatable mode. When you
press (@ a prompt appears:

1,2,3,4,5,6,7,8 or <E>?

if you press the Debugger displays the values of the base registers in
area 5 of the screen (see Figure 2). There are eight offset base registers.
They supply the “base” or start address of the program or O module.

After you set an offset address, you can specify an address as a relocatable
location, followed by a colon, followed by the number of the offset register.
(Your Assembler listing gives the relocatable locations of each instruction.)

For example, if an instruction in the assembly listing is at relocatable 0001A,
and you linked the program using an absolute start address of 6000H, press
@ in response to the above prompt, and you will receive:

Base Adr <E>?

39

ODEL ill/4 ALDS

type:
6000

This sets base register 1 to 6000H. Then, an address 1AH bytes after the
beginning of 6000H can be entered as 1A:1.

P (Model Iil) or (& (Model 4)
Prints what is currently displayed on your screen. If your printer is not ready,
you must press the BREAK key to return to the command line.

Q
Exits the Debugger and returns to the TRSDOS Ready mode. All existing
breakpoints are cleared. The Debugger is turned off.

R
Alters the contents of any of the registers. When you press ®), a prompt
appears:

C.E.LA(F),B(C),D(E),H(L),(1X,()Y,S(P) or P(C)?
After you press the appropriate letter, the Debugger prompts you for a value

to put in the register. For example, if you are changing the C register, a
prompt appears:

(C=##o0or# <E>)C="

To change the register to FFH, type:

FF

The screen is updated and the C register now contains FFH.

You can also change register pairs. For example, if you were changing the
contents of the HL register pair o A064H, after you press ®), respond to the
register prompt by pressing @. You are then prompted with:

(HL = #### or ### or H =## or # <E>)HL="?
To complete the change, simply type:
A064

if you are changing a register pair and you input only 3 digits, the Debugger
assumes leading zeros. By using the N command first, you may alter the
contents of the prime register set.

The stack pointer and the program counter may not be changed to point at
the protected areas. Keep in mind when changing the stack pointer that
ALBUG uses the stack. To be safe allow for a stack size of 256 bytes.

S
Executes a TRSDOS system command. Enter the system command after
the S. For example:

S DIR (ENTER)

40

DEBUGGER

returns the directory of drive 0, and then prompts you with:
<ENTER> to continue

Note: Some commands automatically jump to TRSDOS Ready if there is an
error such as “File not found”. If this occurs, be aware that the breakpoints
are not cleared.

ghanges the start address of the Upper or Lower Dump. When you press (0,
a prompt appears:

(U)pper or {L)ower?

Depending on which you press, @ or (U, you will be prompted with either:

U Address =7

or
L Address =7

For example, to change the start address of the Upper Dump to 6000H,
respond to “U Address = ?” with:

6000

Y4
Enters the DISK ZAP mode, allowing you to debug disk files. See the
explanation below.

The Disk Zap Mode

The DISK ZAP mode allows you to change the contents of your fixed length
record disk files. When you enter the Z command, the screen clears, and you are
prompted:

ALDS Disk Zae
Enter Filespec

7

After you enter the filespec, DISK ZAP asks you for the sector or record number.

Note: DISK ZAP on the Models III and 4 only work on files that have an LRL of
256, therefore the sector number and the record number will be the same.

Eviter Sector/Record Number (# <E> or <E>) 7

You can specify a sector number, or just press (ENTER). If you press (ENTER), the
DISK ZAP displays the first disk sector containing your file (relative sector 0).

The display for the sector is similar to what the M (Modify memory) command
displays, except that the relative sector and starting byte numbers are listed along
the left side in hexadecimal. For example, the number 1100 refers to sector 11
hex (17 decimal) and byte 00.

You can move from sector to sector by pressing the semicolon (G) which
advances the display to the next sector. The minus sign () decrements the

41

MODEL ill/4 ALDS

display to the previous sector. If you cross a file boundary (i.e. if you goto a
sector not used by your file), you will return to the DISK ZAP filespec prompt.

You can modify the data in your file much like you modify memory. When you
press (W, the Debugger puts the cursor onto the first byte of the sector. You can
then position the cursor to the correct byte with the up, down, left, and right
arrows. After you have completed your change, press (ENTER) to write the change
to the disk. If you don’t want the change written, press the key.

Technical Note: Decimal numbers in ALBUG are treated modulo 65536. For
example, a number entered as 65537 will be treated by ALBUG as 1. Thus,
ALBUG will not let you access any sector or record above 65535.

Disk Zap Errors

If you get an error message while using DISK ZAP, it is a TRSDOS error
message. See your TRSDOS Owner’s Manual for an explanation.

Leaving The DISK ZAP Mode

Pressing at the DISK ZAP filespec prompt returns you to the Debugger.
Pressing from any other level of DISK ZAP returns you to the original
DISK ZAP filespec prompt.

42

LINKER

Chapter 5/

The ALDS Linker
(ALLINK)

The ALDS Linker converts a relocatable object file into absolute object code.

Unlike many linkers, ALDS Linker receives its commands through directives in
your program. You can use these directives to get the Linker to link in external
program sections and use external symbols. The Linker directives are:

PSECT — begins a program section and determines its mode (absolute or
relocatable)

PUBLIC — declares symbol definitions PUBLIC so that other program
sections can use them

EXTERN — brings in external symbols

GLOBAL — creates a global symbol file

GLINK — brings in global symbols

LINK — links an external absolute or relocatable program section

For information and examples on how to write a relocatable program containing
Linker directives, see Chapter §.

The Linker Command

This command, typed in the TRSDOS Ready mode, loads and executes the
Linker:

ALLINK filespecl filespec2 {options}

filespecl is the relocatable file you want converted. If you do not specify an
extension, the Linker assigns it the extension /REL.

filespec? is optional. If specified, it stores the converted absolute object file. If
not, the Linker will still processes the file so that you can test for undefined
symbols, missing files, or generate a listing.

On the Models III and 4, filespec2 must have the extension /CMD to load and
execute. You can use an asterisk (*) to specify filespec2. If so, the Linker assigns
it filespecl’s name with the extension /CMD.

You can specify one or more of these options, separated by a blank space:

$ = nnnn specifies the absolute hexadecimal start address of the program. If
omitted the start address is 3000H (Model 4) or 5200H (Model III).

43

MODEL lll/4 ALDS

MAP prints each PSECT name, its absolute start address, and the start, end,
and transfer address of the program.

SYM prints the absolute address of each PUBLIC and GLOBAL symbol,
sorted alphabetically by symbol. You cannot use this option with the
XREF option.

XREF prints an alphabetical cross-reference of each PUBLIC and GLOBAL
symbol, its absolute address, and all addresses which reference it. This
option overrides the SYM option, if both are specified.

DISK saves the listing requested by the MAP, SYM, or XREF options on
disk. The resulting disk file has the same name as filespecl with the
extension /MAP.

PRT directs the listing requested by the MAP, SYM, or XREF options to the
printer.

Examples:
ALLINK PROG/REL PROG $=700@0 MAP SYM DISK (ENTER

assigns absolute addresses beginning with 7000H to PROG/REL and stores the
resulting file as PROG/CMD. The Linker displays a PSECT MAP and a table of
absolute symbol definitions then stores this listing in a file named PROG/MAP.

ALLINK PROG DONE (ENTER

assigns absolute addresses beginning with 3000H (Model 4) or 5200H (Model
I1I) to PROG/REL and stores the resulting file as DONE/CMD.

ALLINK PROG * (ENTER

assigns absolute addresses beginning with 3000H or 5200H to PROG/REL and
stores the resulting file as PROG/CMD.

Technical Information

Operation
The Linker processes the file in two passes. In pass 1, the Linker:

» processes any LINK directives by linking in the specified program sections.

* assigns the file absolute addresses. It does this by offsetting the relocatable
locations (assigned by the Assembler) to the absolute start address.

e processes any LINK directives by linking in the specified program sections
(PSECTs). If the PSECT to be LINKed is relocatable, the Linker assigns it
addresses which immediately follow the last relocatable PSECT. If it is
absolute, the Linker will assign it the same addresses the Assembler assigned it.

44

LINKER

* processes any PUBLIC or GLOBAL directives by inserting the declared
symbols and their corresponding definitions in a Linker symbol table.

» processes any GLINK directives by inputting the specified global file’s symbols
into the Linker symbol table.

In pass 2 the Linker:

« fills in the addresses of any EXTERNal symbols, and generates error messages
for all undefined symbols.

« if filespec?2 is specified, saves the resulting absolute file.

» processes any GLOBAL directives, by creating a global file.

Maximum Sizes:
The Linker links up to 200 external program sections (PSECTSs).

The Linker Symbol Table holds at least 2,000 external symbols. However, if you
use symbols smaller than the maximum size of 10 characters, the Symbol table
can hold more.

The maximum absolute object file which the Linker creates can be as large as
TRSDOS will load. See your TRSDOS manual.

45

FILE TRANSFER

Chapter 6/

ALDS File Transfer System
(ALTRAN)

The ALTRAN program transfers files created under the ALDS package between
any two TRS-80s (Model I, II, III, 4, 12 or 16) by either hardwire or modem. It
transmits or receives object code, source code or data files. This chapter explains
how files can be transferred between the Models II1 and 4. If you wish to transfer
files on your Model I, II, 12 or 16, you will need the Model Il ALTRAN
package.

Since ALTRAN was developed specifically for files created with the ALDS
package, we cannot guarantee that it will accurately transfer files created with
other software.

Set-up

You can use two types of connections in ALTRAN: modem or hardwire.

Modem

The standard RS-232C Interface is appropriate if you plan to transfer files via a
modem. You can use any TRS-80 modem provided that both ends can use the
same baud rate and can communicate with each other (i.e. both can’t be originate
only or answer only modems).

See your Radio Shack modem operation manual for installation instructions.

Hardwire

If you plan to hardwire the Models III and 4, you will need:

Model 111/4 to Model 11174 26-1408 RS-232C Cable
26-1496 Adapter Box
26-1497 12" Extension Cable

Baud Rate

The factory sets the baud rate at 300 for all ALTRAN packages. As a general rule
with most systems, the quality of transmissions is directly proportional to the

47

MODEL lii/4 ALDS

ratio of distance versus baud rate. In other words, the higher the baud rate, the
shorter the distance allowed.

If you want to change the factory-set baud rate, you can use the PATCH utility.
The patch for the Model III is:

PATCH ALTRAN/CMD (ADD=520B,FIND=35:CHG=nn)
where nn is the value in Table 9.

The patch for the Model 4 is:

PATCH ALTRAN/CMD (DBO.B4=pn:FOQ84=53)

where nn is the value in Table 9.

Table 9/ Baud Rate Change Table

Baud Rate Desired Model iif and 4 Patch

75 11
110 22
150 44
300 55
600 66
1200 77
1800 88
2400 AA
3600 BB
4800 CC
7200 DD
9600 EE

The following table shows the recommended maximum distance (hardwired)
versus baud rate for high quality transmissions. The factors that govern this table
are for worse case non-modem situations.

Note: All values are approximate.

Maximum Model lli/4

Baud Rate Distance
75 —300 500 feet
600 —1200 50 feet
1800 — 3600 25 feet
4800 + 10 feet

Loading ALTRAN
To load ALTRAN from TRSDOS Ready, type:
ALTRAN

48

FILE TRANSFER

The program immediately displays the menu of operations and the settings of the
RS-232C parameter list.

Figure 3 shows the menu of ALTRAN.
Tandy Svstems Desidgn Model 4 File Transfer Prodran

Copyridht 1982,198B3 Tandy Corrp, Verss vusrr.pp
380 baud, B8 data bitss no paritys, 1 stop bit

1 - Transmit OBJECT file 2 - Receive OBJECT file
3 - Transmit SOURCE file 4 - Receive SOURCE file
5 - Transmit DATA file 6 - Receive DATA file

7 - Transmit via COMMAND file

8 - Receive via received COMMAND file or WILDCARD mask

9 - Enter ‘Mini-Terminal’ Mode

@ - Return to TRBDOS

Figure 3. THE ALTRAN MENU
Operations 1, 3, 5, and 7 are the transmission modes. The one you select depends
on the type of file you want to transfer.

Operations 2, 4, 6 and 8 are the receiving modes. Again, the one you select
depends on the type of file you'll be receiving.

You can use operation 9, ‘Mini-Terminal;, for terminal to terminal
communications.

See COMMAND FILE for instructions on creating a command file.
The transmit WILDCARD operation is only available on Model II ALTRAN.

Operation

Once you load ALTRAN, as a final test to ensure both transmitting and receiving
stations are operational, send a test message via Operation 9 - ‘Mini-Terminal’
mode in both directions. ALTRAN must be able to communicate in both
directions to function properly.

Beginning the Transmission

1. Determine the type of file you want to transfer.
Use operations 1 and 2 (OBJECT file) for:
* ALDS object files (both executable and relocatable)
Use operations 3 and 4 (SOURCE file) for:

¢ ALDS source files

* Series I Editor/Assembler source files (the file transfer system will write the
file to the receiving station in ALDS source file format).

49

MODEL /4 ALDS

Use operations 5 and 6 (DATA file) for:

» fixed length record files (assembler global files, application program data
files, assembler listing files, and non-ALDS source files such as some
BASIC files.)

Please note some non-ALDS Model III and Model 4 files, with an EOF byte
which is not zero (as displayed in the directory) may not transfer properly.
This is because ALTRAN will change the EOF byte to zero, thereby
changing the length of the file. :

Note: When transferring files from one model to another, you must consider
the differences between systems. It is unlikely that the same object file can run
on all models due to the difference in ROM and RAM addresses, etc. In
addition, we can’t guarantee successful transfer of file formats not used by
ALDS, even though some files may transfer.

2. Select an operation.

The number of the operation you choose depends on the type of file you want
to transfer and whether you’re the transmitting or receiving station. If you are
the transmitting station and plan to send an OBJECT file, type 1 in
response to the Which? prompt. The receiving station enters a 2 in answer to
the Which? prompt. (The order in which the stations enter their operations
doesn’t affect the transfer, i.e. the receiving station can specify operation 2
before the transmitting station specifies operation 1.)

w

. Specify a file.

After each station selects an operation, ALTRAN prompts for a filespec with

Both stations should enter the name of the file. Be sure to include the
extension and drive number (if not the system drive).

If you choose Operation 7, ALTRAN prompts the the transmitting station with
File Name? (See COMMAND FILE later in this section on how to
create one.)

Using Operation 8, ALTRAN prompts the receiving station with Drive
Number?. To avoid the possibility of accidently writing over a file, the
receiving station should use a blank formatted diskette.

During the Transmission

When operation actually begins, the transmitting station immediately sends the
first block of the file. During transmission, the display reads:

‘Transmitting Block 1 7/

As each block is sent, it increments the block number by one. (Depending on the
baud rate and LLRL, this increment may take from a fraction of a second to about
a minute.) This message is not displayed if you are transferring a null file (EOF
and no other information).

50

FILE TRANSFER

At the same time, the message:
‘Receiving Block 17

appears on the receiving station’s video display. This indicates that the station is
ready to receive the first block of the file, and is not necessarily receiving it.
After each file is received, the block number displayed is one more than what
was actually received.

This message may not come on immediately in operations 5 and 6 because the
transmitting station must first send the file type and the logical record length of
the file before the receiving station can be readied to receive the first block of the
file.

After receiving each block, ALTRAN increments the block number by one, then
stores that block to disk under the filespec named in step 3.

If the receiving station is not ready, the transmitting station keeps trying to
transmit a block until it receives an acknowledgement or until the (BREAK) key
is pressed.

Once transmission actually takes place, the receiving station expects a block until
it receives an EOF marker or until the (BREAK) key is pressed. If the (BREAK) key is
pressed during transmission of a file, the file won’t be valid or useable.

On SOURCE file transfer only, prior to transmission, ALTRAN at the
transmitting station checks the first line of the file for an existent line number.
If there is none, it automatically adds line numbers to the entire file before
sending the file.

The receiving station strips the bytes corresponding to the line number from all
lines of the transferred file as it stores them.

In the ‘Mini-Terminal’ mode, you can transmit any character except (=) and

and the receiving station will output the character to the screen. However,
not all of the TRS-80 models (at the receiving station) interpret the characters in
the same way. One model may interpret the control characters differently and
display a character other than what was transmitted. On other models, certain
characters may activate features such as dual routing, reverse video, or 40-
character mode. And, the Models III and 4 won’t output tabs.

Ending the Transmission

After all transmissions are complete for operations 1 through 8, ALTRAN
returns to the menu, unless you are sending a command file ending with
operation 9.

To escape from the menu, type @ (ENTER). To exit the ‘Mini-Terminal’ mode,
press (=) on the Model 11I/4.

If you want to transfer another file, return to Step 2.

51

MODEL lil/4 ALDS

When an Error Occurs

If an error occurs at one station (not including ‘Unknown or unuseable baud rate
was patched’ which autornatically returns to TRSDOS Ready), ALTRAN will
cease transmission, close the file, return a descriptive error message, and display
the following:

Further transmission not possible

Press to go into Mini-Terminal mode
Press (ENTER)(=) to return to menu

Press to exit to TRSDOS Ready

When an error occurs, the computer making the error will send a cancellation
message (CLEARXO or 18H) which the other computer will display minus the
descriptive error message.

Under certain circumstances, such as transmitting or receiving the LRL, a byte
of data, or the checksum, this feature is disabled so that a legitimate 18H won’t
cause a cancellation and an error message won’t be displayed. Therefore, if your
computer remains idle for a period of time (the length depending upon your baud
rate), you can assume an error has occurred. Press to return to TRSDOS
Ready.

Note: It is always a good idea for both stations to arrange to go to ‘Mini-
Terminal’ mode if an error occurs. Because the station not causing the error isn’t
always informed of an error, you should return to ‘Mini-Terminal’ mode if your
computer locks up for an unusual length of time.

Command File

A command file is an automatic input file. This file executes a series of
operations with one command. By building a command file, you will be able
to transmit several files with this one command.

You must enter the Editor to create a command file. The procedure is:

. Load the Editor

. Enter the Insert Mode

. Enter the filespec you are sending

. Tab over one position and enter the operation code number used for
transmitting the file (1, 3, or 5)

. Repeat steps 3 and 4 until all files are entered.

. If you want to invoke Mini-Terminal mode, enter it last. A dummy filespec
must precede it.

7. Exit insertion mode

8. Write the command file to disk. Do NOT use the line numbers option.

LR —

[o W)

Example:
At TRSDOS Ready, type:
ALEDIT

to enter the Screen Editor. Then type I to enter the insertion mode.

52

FILE TRANSFER

In the insertion mode, type:

FILE1/SRC 3
FILEZ/0B.J 1
FILE3/DAT 5
DUMMY g (ENTER

to create the command file.

When run, this command file transmits three files in a row with one input
command. It transmits the first filespec, FILE1/SRC, as a source file, the second,
FILE2/OBJ, as an object file, and the third, FILE3/DAT, as a data file. The last
file, DUMMY, isn’t transmitted. It invokes the ‘Mini-Terminal’ mode.

If for some reason you don’t have ALEDIT, you may download the Command
File from another computer, using the SOURCE File Transfer.

Technical Information

Definitions:

ACK = Acknowledgement of receipt of correct block or inquiry and request to
transmit next block. (code 06H)

NAK = Acknowledgement of receipt of incorrect block and request for
retransmission. (code 15H)

WAK = Acknowledgement of receipt of correct block, but wait before
transmitting next block (so the computer may write out block). (code
1BH)

EOT =End of transmission of this file. (code 04H)
ENQ = Enquire for a ready to receive. (code 05H)

ETX = End of text. (code ®3H)

CAN = Cancellation (aborts current transfer) (code 18H)

Algorithms
Object Files

ALTRAN transmits and receives OBJECT files as 256 byte, fixed length record
(FLR) blocks.

It uses this algorithm to transmit OBJECT files:

1 open file for read
2 read a sector into a buffer
if end of file, send EOT, receive ACK, and return to menu
3 display xmit block number
4 send ENQ

53

MODEL [li/4 ALDS

0~ ON

9

receive ACK

output sector

output checksum

receive ACK or NAK or WAK
repeat block if NAK
if WAK, wait for ACK

goto 2, “‘read a sector”

It uses this algorithm to receive OBJECT files:

W =

~N N

8
9
10
11

open file for write
display received block number
receive ENQ
if EOT, send ACK, close file and exit
send ACK
receive sector
receive checksum
output ACK,NAK,WAK
repeat receive if NAK
send WAK
write sector
send ACK
goto 2, “display block number”’

Source File

ALTRAN transmits SOURCE files as fixed length records (FLR) 256 on
Models 111/4.

It uses the following algorithm to transmit the SOURCE file:

1
2

O o0 ~INWN bW

10

open file for read

read in a line (if MOD I11/4 strip bit 7 from line numbers). If a line
number is not present on the first byte of the line, add a line number.
Be sure the source does not have numbers in column 1. They may be
accidentally deleted. If end of file, send EOT and receive ACK.

display xmit block number

send ENQ

receive ACK

send line length

output the line

output the checksum

receive ACK, or NAK, or WAK
repeat line if NAK
if WAK, wait for ACK

goto 2, “‘read in a line”’

It uses this algorithm to receive the SOURCE file.

1
2

open file for write
display receive block number

54

FILE TRANSFER

3 receive ENQ
if EOT, send ACK, close file and exit
send ACK
receive line length
receive the line
receive the checksum
send ACK, or NAK, or WAK
repeat receive if NAK
send WAK
write the line, without the line number
9 goto 2, ““‘display block number”

Data File

(e BN M@ NR U Y

The ALTRAN program sends DATA files as fixed length records (FLR) on the

Models I11/4.
It uses the following algorithm to transmit the DATA file:

1 open file for read
2 send file type (F) and file’s LRL
3 read in one record of data
if end of file, send EOT, receive ACK, and exit.
display xmit block number
send ENQ
receive ACK
send data record length
send data
send checksum
receive ACK or NAK or WAK
repeat xmit if NAK
if WAK, wait for ACK
11 goto 3, “‘read in one record”

SOOI W b

It uses this algorithm to receive the DATA file:

receive file type (F) and file’s LRL
open file for write with those parameters
display receive block number
receive ENQ
if EOT, send ACK, close the file and exit
send ACK
receive data record length
receive data
receive checksum
send ACK or NAK or WAK
repeat receive of NAK
send WAK, write data record

EENRUL I S A

ftelife IR e WY

55

MODEL [Il/4 ALDS

10 send ACK
11 goto 3, ‘‘display block number”’

Indirect Command File

ALTRAN uses this algorithm to transmit the COMMAND file:

fo—y

open IND file for read

build a text line
if end of file, send ETX, wait for ACK, and return to menu.
send ENQ
receive ACK
send file name and function
send checksum
receive ACK or NAK or WAK
if NAK, goto send ENQ
display file name
9 transmit file through functions 1, 3, or 5
10 goto 2, “build a text line”

NN AW [0S

2]

It uses this algorithm to receive the COMMAND file:

1 receive ENQ or ETX
if ETX, send ACK and return to main menu

2 send ACK
3 receive file name and function
4 receive checksum
5 send ACK or NAK or WAK
if NAK, goto receive ENQ or ETX
6 display file name

7 receive file through functions 2, 4, or 6
8 goto 1, “‘receive ENQ or ETX”’

Mini-Terminal Mode

ALTRAN uses the following algorithm to transmit and receive keyboard
characters:

1 scan keyboard for character

if escape character, exit mini-terminal mode

if character, then display and output to RS-232C
2 scan RS-232C input

if character, then display
3 goto 1, ““scan keyboard”

56

FILE TRANSFER

Building an Adapter Connection

If you want to, you have the option to build your own adapter connection instead
of buying a Radio Shack Adapter Box (Catalog Number 26-1496).

Required Materials

Model /4 RS-232C Interface Board
RS-232C Cable
DB-25 Male Connector (2)

When hardwiring for Model 111/4 to Model I11/4, the pin connections are as
shown below:

Figure 4./ Model 1ll/4 Pin Connections
The pin connections are as shown:

1 1

S
3 3

57

LANGUAGE SYNTAX

Section II
ALDS Assembly Language

59

LANGUAGE SYNTAX

Chapter 7/

ALDS Assembly Language
Syntax

This chapter describes how the ALDS Assembler interprets source lines. The
next chapters list all the instructions available with ALDS.

An ALDS assembly language source line can contain up to four fields. They are:

« the label

* the instruction
o the operands

° the comment

The Label

The label is optional. It is a symbol which defines the location of the instruction
immediately following it. For example:

NAME LD A5

NAME is a symbol used as a label. The Assembler uses it to store the location of
the LD A,5 instruction. For example, if LD A,S is at location 5200H, the
Assembler assigns the value 5200H to NAME and stores this in the symbol table.

The label must begin in column one (the first character in the line) or be followed
by a colon. For example, this line produces a syntax error:

NAME LD A5
since the label NAME is not in column one.
However, this is acceptable:

NAME: LD A5
since NAME is followed by a colon.

Valid Symbols

A symbol can consist of up to ten of the following characters:

alpha characters
(A-Z) in either upper or lower case (the Assembler treats upper and lower case
letters differently. “NAME?’’ for example, is a different symbol than ‘‘Name”’).

61

MODEL [il/4 ALDS

numeric characters
(0-9) (the symbol cannot begin with a number).

special characters
the underscore (__.)
the question mark (?)
the dollar sign ($)
the @ character

It may not contain a space character. These are examples of valid symbols:
Date? $B_7 AlD2 B2345678

The following are reserved words. You cannot use them as ordinary symbols,
since this conflicts with the way the Assembler notes register names, branch
conditions, or the location counter value:

$ A B C D E H L F Z P
M I R \Y AF BC DE HL SP IX IY
XH XL YH YL NC NZ PE PO NV

Reserved words are reserved in both upper and lower case. For example, SP, sp,
Sp, and sP are all reserved.)

The Instruction

The instruction is usually required. It can be either:

a Z80 mnemonic
(Chapter 9), which is an instruction to the microprocessor that the Assembler
converts into a Z80 operation code.

an assembler directive
(Chapter 8), which is an instruction to the Assembler itself.

an extended Z80 mnemonic
(Chapter 10), which the Assembler expands into a group of Z80 mnemonics.

a macro call
(Chapter 8), which the Assembler expands into one or more of the above types of
instructions.

You can begin the instruction anywhere but in column one. If the line contains a
symbol, there must be at least one space, tab, or colon between the instruction
and the symbol.

For example, the Assembler interprets LDIR as an instruction in all of these
lines:

SYMBOL LDIR
SYMBOL LDIR
LDIR
LDIR

62

LANGUAGE SYNTAX

However, in these two lines:

SYMBOLLDIR
LDIR

the Assembler interprets LDIR as part of the symbol field.

You can use either upper or lower case to indicate the instruction. For example,
you can indicate the LDIR instruction as:

Idir

Of course, in the case of a macro call, you must be careful that you use the same
case that you used when you defined the macro.

The Operands

Many instructions allow you to specify data as operands. Some instructions allow
you to use a register name or a flag as an operand. Some allow you to indicate a
specific value.

You must use at least one space or tab to separate the operands from the
instruction. In these examples, A and 3 are operands:

SYMBOL LD A,3
LD A3
LD A3

However, this line produces an error:
SYMBOL LDA,3

since there is no space between the instruction and the operands.

Expressions

When specifying a certain value as an operand (such as *“3”" in the above
example), you must use a valid assembler expression. The expression can consist
of one or more terms connected by operators.

Terms
A term can be:

a number

The Assembler assumes the number is decimal (base 10) unless you use a base
suffix or the RADIX directive. Changing number bases is described in the next
chapter.

an ASCII character
You must enclose the character in single quotes. The Assembler will assemble it
into its ASCII code.

63

MODEL lil/4 ALDS

a symbol
The Assembler fills in its value using the symbol table.

$ (the dollar sign character)
The Assembler interprets this character as the location counter’s current value.

For example, each of these are valid terms:

152

which represents the decimal number 152 (unless you have used the RADIX
directive described in the next chapter).

IA/

which represents the ASCII character code of decimal 65 or hexadecimal 41.
SYMBOL

which represents the value of SYMBOL.

$

which represents the current value of the Assembler’s location counter.

Operators

The operators and their functions are listed on Table 10. If an asterisk (*) follows
the function, the operator is unary (acts on one operand). Otherwise it is binary
(acts on two operands).

Table 10/ Operators

OPERATOR FUNCTION PRIORITY
+ unary plus* 1
- unary minus* 1
.NOT. logical not* 1
HIGH.or.MSB. high order byte* 1
.LOW.orLSB. low order byte* 1
BIT. bit* 1

(one shifted n bits to the left)
**or” exponentiation 2
* multiplication 3
/ integer division 3
.MOD. modulo 3
.SHR. logical shift right 3
SHL. logical shift left 3
.RR. logical rotate right 3
.RL. logical rotate left 3
+ addition 4
- subtraction 4
AND. logical and 5

64

LANGUAGE SYNTAX

.OR. logical or 6
XOR. logical exclusive or 6
ABS. absolute value® 7
EQ.or = equals 7
.GT. or > greater than 7
.GE. greater than or equal to 7
LT or< less than 7
.LE. less than or equal to 7
.RES. result* 7
(ignore overflow)
.SGN. sign* 7
.UGT. unsigned greater than 7
.UGE. unsigned greater than or equal to 7
ULT. unsigned less than 7
.ULE. unsigned less than or equal to 7
Examples:

43Z1H.SHL, 3

returns the number 4321H shifted three bits to the left.
4321H.8HL .1

returns the number 4321H shifted one bit to the left.
+RES. (7FFF#7FFF)

multiplies 7FFFH by 7FFFH and returns the result. (The RES. operator causes
the Assembler to ignore the overflow error this operation would normally cause.)

+BGN.SYMBOL
returns a-1 if SYMBOL is negative, 0 if it’s zero, or 1 if it’s positive.
Priority of Operators

When you use multiple operators, the Assembler evaluates them using the
priority number indicated. If two operators have the same priority, the Assembler
evaluates them from left to right.

You can use parentheses to change the priority of operators.

Examples:

4+4/2

The division is performed first. (Division is priority 3; addition is priority 4.)
(4+4)/2

The addition is performed first.

4#4/2

The multiplication is performed first.

65

MODEL [i/4 ALDS

Note: You must use parentheses to separate two operators which are both
enclosed in periods. For example:

LD HL,5.AND. . ABS. —4 is illegal
LD HL,5.AND.(.ABS. —4) is valid

Using Relocatable or External Symbols
in Complex Expressions

When using complex expressions, i.e., expressions using more than one term,
you need to be careful about using symbols which are:

e external (defined in an external program section), or
* relocatable (defined in a relocatable program section).

Table 11 shows which types of complex expressions allow relocatable or external
symbols, and the type of value which the Assembler will return. If the expression
is not on this table, you cannot use a relocatable or external symbol. Under no
conditions-can you use relocatable and external symbols within an absolute
program.

TABLE 11/ Complex Expressions Allowing
Relocatable or External Symbols

Definition of Terms:

ABS is an absolute constant, symbol or expression
EXT is an external symbol or expression

REL is a relocatable symboi or expression

ALL is any of the above

COMPLEX EXPRESSION RESULTING TYPE
EXT +ABS EXT
ABS + EXT EXT
EXT - ABS EXT
REL +ABS REL
ABS + REL REL
REL — REL ABS
REL - ABS REL
ALLEQALL" ABS
REL.GE.REL ABS
REL.GT.REL ABS
REL.LT.REL ABS
REL.LE.REL ABS
REL.UGE.REL ABS
REL.ULE.REL ABS
REL.UGTREL ABS
REL.ULT.REL ABS
HIGH.REL *

66

LANGUAGE SYNTAX

.MSB.REL
.LOW.REL
.LSB.REL
HIGH.EXT
MSB.EXT
LSB.EXT
LOW.EXT

* Ok % % % % %

*these expressions cannot be used as a term in a larger expression.
Also, they must be used only where an 8-bit quantity is expected.

**the terms must be of the same type (absolute, external, or relocatable) in order
to be equal. Two externals are never equal, including the special case of
comparing an external to itself.

Other Special Conditions
Regarding Relocatable or External Expressions

These are some additional considerations you need to be aware of when using
relocatable or external expressions:

» If you attempt to fit a relocatable or external value outside of the range of —256
to 255 into an 8-bit field, you will not get an error message. The Assembler will
store the low order byte into this field. (Absolute values outside this range
generate an error message.)

° You can use the .HIGH., .MSB., .LOW,, or .LSB. operators only where an 8-
bit value is expected. If you use one of these operators where a 16-bit value is
expected, the Assembler will either give you an error message or unpredictable
results.

o If you use the .HIGH. or .MSB. operator, the Assembler saves the entire value
in the object code so it can properly compute the carry into the high order byte
(which might result from adding the load address to the expression value during
linking)

The Comment

The comment is an optional way to document your program. The Assembler
ignores it.

To insert a comment at the end of a line, you must precede it with a semicolon.
For example, all of these lines contain comments:

NAME LD A+3iThis 1s a comment
LDIRSAND 80 18 THIS
sand here is another comment

LD A3 sand another

The Assembler ignores every character following the semicolon. However, this
line produces a syntax error:

NAME LD A3 This is an illedal comment since there
is no semicolon epreceding the comment,

67

MODEL lll/4 ALDS

Another way to insert a comment is by typing an asterisk (*) in column one. The
Assembler ignores all lines which follow until it encounters another * in column
one.

For example:

LD A3

#This bedins a comment section which the Assembler will
idriore.

comment s comment

comments comment

This is the last line in the comment section
#

ADD B
the Assembler ignores all lines between LD A,3 and ADD B.

68

DIRECTIVES

Chapter 8/
Assembler Directives

Assembler directives are commands to the Assembler oror, in a few cases, the
Linker. They are not instructions to the Z-80 Microprocessor and are not a part of
your executable program. Generally, you can type them in the same form as the
Z80 mnemonics and insert them throughout the program.

This chapter contains two parts. Each part contains sample programs or segments
of programs which are used to help explain the use of assembler directives. You
will not be able to run these sample programs or program segments on your
computer.

Part A is a tutorial. It describes the different types of directives — what their
purpose is and how they inter-relate with each other in the program.

Part B is a reference. It contains an alphabetical listing of each directive. Each
listing gives the syntax, a definition, and an example use.

Introduction to Assembler Directives

ALDS assembler directives allow you to:

* Change Number Bases

¢ Define Symbols

* Define Data

* Define Storage

* Initialize the Location Counter

* Manipulate the Location Counter
* Terminate or Hold the Assembly
* Use External Symbols

* Create Index Sections

* Define Macros

* Create a Conditional Section

* Control the Assembly Listing

Changing Number Bases

The Assembler recognizes number bases 2 (binary), 8 (octal), 10 (decimal) and
16 (hexadecimal). The default is base 10.

69

MODEL lil/4 ALDS

You can change the default with the RADIX instruction. For example:
RADIX 8
tells the Assembler to evaluate all subsequent numbers as base 8.

Using a base suffix identifies a base for a particular number. The base
suffixes are:

H Hexadecimal
d Decimal

b Binary
QorO Octal

For example, in this instruction:
LD A33H

the 33 is evaluated as a hexadecimal number, regardless of which default base
you are in.

You can use upper case ‘“‘d”’ and ‘b’ suffixes. Be careful with this, though, since
the hexadecimal base interprets “D”’ and *‘B” as numbers. For example, in base
16, ““1b”’ is a binary 1; ““1B” is hexadecimal 1B.

Defining Symbols
Defining symbols allows you to refer to data or memory addresses symbolically.

This makes the program easier to read and revise.

ALDS‘ allows you to use a symbol to label the location of any Z80 instruction and
most directives. It also contains these directives which define symbols:

* EQU —equates a symbol to a constant value
* DEFL — defines a symbol to a variable value

For example:

NUMBER EQU 1z iEQUates NUMBER to 12
LOOP LD A NUMBER iloads A with 12
LD HL +LOOP iloads HL with LOOP

This program uses NUMBER and LOOP as symbols. The first line EQUates
NUMBER to 12. The next line uses NUMBER as an operand.

LOOP will define the location of LD A,NUMBER. The last line uses LOOP to
specify this location.

70

DIRECTIVES

Defining Data

Data definition directives insert data into RAM. ALDS contains these data
definition directives:

e DEFM — defines string data

* DEFE - defines “‘encrypted data”

e DEFT -— defines data and includes a length byte

* DEFB — defines a byte

« DEFW — defines a word

e DEFR -— defines a Roman Numeral

s DATE - defines the current date

« TIME — defines the current time

For example:

LD HL.»TABLE

calLl PRINT iPRINT TABLE ON VIDEO SCREEN
TABLE DEFM ‘THIS BEGINS A TABLE OF DATA’

DEFB DDH

DEFM inserts the ASCII codes for THIS BEGINS A TABLE OF DATA in the
next 27 locations. The symbol TABLE defines the beginning of this location.

The subroutine PRINT is used as an example for a routine that displays the
specified information on the screen.

Defining Storage

Defining storage reserves an area of RAM which you can use for such functions
as inputting and outputting data. ALDS contains these storage definition
directives:

* DEFS — reserves RAM

¢ FILL — sets the ““fill mode’ so that DEFS will fill the reserved area
with zeroes

* NOFILL — ends the fill mode
For example:

LD HL +BUFFER
LD B20
CALL KEY jkevboard input into

iBUFFER area

FILL
BUFFER DEFS 20 ireserves the next 20 bvtes
NOFILL

FILL sets the fill mode. DEFS reserves the next 20 locations for storage and fills
them with zeroes. NOFILL unsets the FILL mode.

71

MODEL ili/4 ALDS

Initializing The Location Counter
The Assembler contains a ‘‘location counter’ which it uses to:

* assign locations to each executable instruction, and
e define the symbols which identify these locations

The locations it assigns are either absolute or relocatable depending on how you
initialize the counter.

Initializing The Location Counter
To An Absolute Location

To initialize an absolute location, you must use PSECT:
START PSECT 7000H

7000 NUM LD A3 ihedin assembling at 7000H
7002 PUSH A
7003 Lo A4B

END NUM

This program section initializes the counter to an absolute 7000H. The
Assembler then assigns all the instructions absolute locations, beginning with
TO00H.

The Assembler saves this assembly on disk as an *‘absolute object file”’ You can
load it in the TRSDOS Ready mode simply by typing the filespec followed by
(ENTER). Each instruction will load into the same (or “‘absolute”) memory location
the Assembler assigned it.

Many other assemblers, such as the Series I, use ORG rather than PSECT to
accomplish the same task. If you want to assemble such a program with ALDS,
you need to change the first ORG to PSECT.

Initializing The Location Counter
To A Relocatable Location

PSECT without an argument initializes the location counter to a relocatable 0000
(the ' signs indicates that the locations are relocatable, rather than absolute):

PSECT
Qaen - NUM LD AsD jbedin assemblind at
irelocatable zero
a2’ PUSH A
oee3 LD AsB
END NUM

72

DIRECTIVES

The Assembler saves this assembly on disk as a relocatable, rather than absolute,
file. You cannot load a relocatable file. You need to use the Linker to convert it
into an absolute file.

For example, if the name of the assembled relocatable file is PROG/REL, this
Linker command:

ALLINK PROG PROG $=7000 (ENTER

assigns absolute locations beginning with 7000H to all the instructions in PROG/
REL. It does this by adding 7000H to each relocatable location. The resulting
program is saved as an absolute file named PROG/CMD.

Manipulating The Location Counter

There are several instructions which manipulate the counter within a program
section. They are:
¢ QORG — changes the value of the counter

¢ LITORG — changes the value of the counter and allows room for literal
operands

e SETLOC — manipulates the counter for symbols only
* RESLOC — ends the SETLOC manipulation

For example:
PSECT 700@H

7000 BEGIN LD A4S shedin assembling at 7000H
7002 LD B2
SECOND ORG BROBH
BOOG LD HL +ADD jincrement counter to BOOOH
so02 PUSH AF
END BEGIN

This program section initializes the counter to an absolute 7000H. The
Assembler begins assigning consecutive absolute addresses until it reaches ORG,
which changes the value of the counter to 8000H. The Assembler assigns 8000H
to the next instruction and continues again sequentially.

Since the above program is absolute, ORG’s parameter sets an absolute location
of 3000H.

In the relocatable mode, ORG’s parameter sets a relocatable location of 8000H.
This means that when you link the program, 8000H serves as an offset to the
program’s absolute start address.

For example, assume you assemble the same program in the relocatable mode.
The Assembler assigns it these locations:

73

MODEL Ill/4 ALDS

PSECT
Boeo - BEGIN LD A3 ibedin assembling at
sirelocatable zero
ope2’ LD By2
SECOND ORG BR00H
8@en LD HL +ADD jincrement counter to
irelocatable BO0O0OH
BRO2 PUSH AF
END BEGIN

Now assume you link the relocatable file to the absolute start address of 6000H.
The Linker assigns it these addresses:

PSECT
GReo BEGIN LD AsD ihedin assembling at
irelocatable zero
B0@Z LD B2
SECOND ORG 8000H
EQDQ LD HL »ADD iincrement to
irelocatable BO0OO0H
EQDZ PUSH AF
END BEGIN

Notice that here, ORG 8000H offsets the absolute start address of 600QH. This
causes the absolute address following ORG to be EQGOH (6000H + 8000H).

Assembly Termination Or Hold Instructions

ALDS contains several directives which terminate or hold the assembly.

They are:

* END - ends the assembly and saves the output object file

* QUIT — quits the assembly

* NOEND — ends assembly of a non-executable *‘load-only” program

* STOP — temporarily halts the assembly

For example, all of the above programs contain an END directive. This tells the

Assembler to end the assembly, store the assembled file, and return to TRSDOS
Ready.

In most programs, you’ll want to use a parameter with END to specify the
transfer address (the address of the first executable instruction in the program).
The Assembler then stores the transfer address so that when loaded, the program
immediately begins execution.

74

DIRECTIVES

Program Sections

All the above programs are ‘‘program sections’. You can store several relocatable
program sections in the same file.

For example:

MAIN PSECT
poeR’ BEGIN LD A3 ibedin first PSECT
0500 RET

SUB1 PSECT
aoee’ LD HL »DATA ibedin second PSECT
0100 RET

suBz PSECT
gooR* LOOP LD B,1@ ikegin third PSECT
Bzo0 "’ SUC 36

END BEGIN

Since each section is independent, it must declare its symbols “PUBLIC”
(discussed below) for another section to use them. Otherwise, two sections may
not share the same symbols. (Only the MAIN program can use BEGIN; only
SUB2 can use LOOP; and DATA must be defined in SUB1.)

Notice the Assembler initializes each program section to a relocatable 0000.
Now assume you link the program to an absolute start address of 7000H:

7000 BEGIN L.D A3 thegin first PBECT
7500 RET
7501 LD HL »DATA jbedgin second PSECT
7681 RET
7602 LOOP LD Bs10 ibegin third PSECT
7882 CALL LIST

END BEGIN

The Linker assigns each relocatable program section an address immediately
following the preceding one.

Using External Symbols

ALDS allows two or more program sections to share the same symbols. For
example, you could write and test several independent subprograms — such as
PAYROLL, PAYABLES, RECEIVABLES, and INVENTORY. You could then
mix and match them into separate application packages.

75

MODEL lll/4 ALDS

ALDS offers two ways of doing this:
1. By linking the programs into one file
2. By creating a ‘‘global symbol file”

The first is more common. The second is for special applications such as overlays
where you want to use only the symbol definitions of an external program, but
not the entire program itself.

1. Combining Program Sections
For combining program sections, ALDS offers these directives:

e PUBLIC — declares symbols public

°» EXTERN — declares symbols external

e LINK — appends an outside program file

These are actually directives to the Linker, as well as the Assembler.

As an example, assume you want to combine a subprogram named PAYROLL
with a main program named ACCTG. You want both programs to share the same
symbols. This is how you could go about it:

a. Declare the symbols you want shared.

You do this by using the PUBLIC or EXTERN directives at the beginning of your
program. In the PAYROLL subprogram:

PAYROLL PSECT

PUBLIC SUBPAY yMENU iSUBPAY and
FMENU are for
$PUBLIC use
k)

ATERN STOREL ISTOREL is in
jan EXTERNal
iPROGRAM
¥

SUBPAY CALL CLS sdefines SUBPAY
jand clears
iscreen

LD HL 'MENU

CALL PRINT iprint MENU

LD HL +STOREL

CALL PRINT iprint STOREL

JP RIT iJumPp to TRSDOS

MENU: DEFM ‘THIS BEGINS PAYROLL FOR’

DEFB @DH
idefines
iMENU

LS

The routine to clear the screen should be placed here

s we wmm [

76

DIRECTIVES

RET
PRINT:
i
3 The routine to display a line should he rplaced here
k)
RET
EXIT:
H
i The routine to return to TRSDOS should be rlaced here
)
JP $
END

The definitions for the symbols SUBPAY and MENU are declared PUBLIC. This
means another program can use the same definitions.

The definition for STOREI is declared EXTERNal. This means that although the
existing program uses STORE]I, an external program defines it.

In the ACCTG program:
ACCTG PSECT
PUBLIC STOREL iSTOREL is for
fPUBLIC use
H
HTERN SUBPAY sMENU FSUBPAY and
iMENU are in
JEXTERNal Sprodrams
3
MAIN CALL SUBPAY
STORE1 DEFM 'ABC DRUGS'
DEFB @DH

H
iThis part of the prodram defines other stores
i

L INK 'PAYROLL/REL’ idinsert
FPAYROLL/REL
ifile

END MAIN

STOREI is declared PUBLIC. This means that this program defines STORE1
and another program can use STORET1’s definition.

SUBPAY and MENU are declared EXTERNal. They are used in this program but
are defined in an external program (namely, PAYROLL).

If you want to try this exercise, use the ALDS Editor to insert the above two
program files. Save the first as PAYROLL/SRC and the second as ACCTG/SRC.

b. Insert a directive to combine the programs

Notice LINK at the end of the ACCTG program. This tells the Linker to link the
assembled code of PAYROLL at the end of ACCTG.

77

MODEL IlIl/4 ALDS

c. Assemble the programs

Assemble both the PAYROLL and ACCTG source program files in the normal
way. In the TRSDOS Ready mode, type:

ALASM PAYROLL PAYROLL (ENTER
AL.ASM ACCTG ACCTG (ENTER

The Assembler creates two relocatable files— PAYROLL/REL and ACCTG/
REL.

The Assembler marks every occurrence of the PUBLIC, EXTERN, and LINK
directives, as well as every occurrence of EXTERNal symbols. However, you will
need to use the Linker to complete the processing of these directives.

d. Link the programs

To link PAYROLL to ACCTG, you can use this Linker command at TRSDOS
Ready:

ALLINK ACCTG/REL ACCTG $=5200 (ENTER

The Linker processes the LINK, PUBLIC, and EXTERN directives and assigns
the entire file absolute addresses beginning with 5200H. This is done in two
passes. In pass 1 the Linker:

» processes the LINK directive by linking PAYROLL/REL to the end of ACCTG/
REL

* assigns the entire file absolute addresses

» creates a Linker Symbol Table which contains the definitions of all the symbols
declared PUBLIC.

In pass 2, the Linker:

» fills in the values of all EXTERN symbols (using the Linker Symbol Table
created in pass 1)

» saves the resulting program as ACCTG, an absolute object file.
e. Executing the program

You now have an absolute file, ACCTG/CMD, which consists of both ACCTG/
REL and PAYROLL/REL. To execute it, type at TRSDOS Ready:

ACCTG (ENTER

Note: In order for this program to execute you must insert the CLS, PRINT and
EXIT routines. Refer to your TRSDOS manual for information on how to execute
these routines.

2. Creating A Global File

Creating a global file is useful if you want to conserve memory by “‘overlaying”
one program on top of the other. To create and use a global file, ALDS offers
these directives:

78

DIRECTIVES

* GLOBAL — declares symbols global

* EXTERN — declares symbols external

* GLINK — tells the Linker to use a global file
* EXT — tells the Assembler to use a global file

As an example, assume you want to create a file name MAIN which consists of a
number of subroutines, such as printing lines on the display.

You also want to create several accounting system files, one of which is
LEDGER. Users will use only one of these accounting systems at a time.
However, each accounting system uses routines from MAIN.

It is therefore necessary to have MAIN and LEDGER in memory at the same
time. However, there is not enough room in memory for both programs.

The alternative is to “‘overlay” one program on top of the other. In this example,
MAIN loads LEDGER. When loaded LEDGER overlays sections of MAIN
which it will not use.

These procedures clarify how this is done:

a. Declare the symbols you want shared.

This time, you do this with GLOBAL and EXTERN directives. In the MAIN
program:

MAIN PSECT
GLOBAL PRINT

BEGIN CALL CL.8 iclear screen
CALL. ROUTINE

load LEDGER routine bedins here

e ax aw

LD HL +LEDGERM
CALL LOADER iload LEDGER file

PRINT routive bedins here

. aw aww

PRINT LD B+ (HL)
LOOP INC HL
LD Ay (HL)
CALL PRINTCHR iprint character
DJINZ LOOP
ieprint contents of
iredister HL
RET
LEDGERM DEFM ".LEDGER "’
DEFB BDH
ROUTINE EQU $

79

MODEL 1il/4 ALDS

k)
iThis part of the prodram contains 18000 hrtes
iof subroutines which only MAIN uses,
iSince LEDGER does not need them
sLEDGER will load inte this area
L
RET
LOADER s

The routine which loads and runs a disk file
should be placed here

wx mm e mw

RET
PRINTCHR:

The routine which disrlavs characters should he
rplaced here

P

RET
CLG:

The routine which clears the screen should be
placed here

R

RET
END BEGIN

The definition for PRINT is declared GLOBAL. When you assemble this
program, the Assembler will create a global file named MAIN/GBL which
contains PRINT’s definition.

Notice that this program loads LEDGER. Also notice that it intends to load
LEDGER on top of the ROUTINE:S at the end.

This is the beginning of the LEDGER program:

LEDGER PSECT
EXTERN PRINT
BEGIN LD HL +MENU
CALL PRINT
JP EXIT jJump to TRSDOS
MENU DEFT ‘THIS BEGINS THE GENERAL LEDGER MENU’

the rest of the very long
LEDGER eprodram does here

L INK ‘MAIN/GBL’

80

DIRECTIVES

HIT:
H
The routine to return to TRSDOS should hbe
i placed here
¥
RET
END BEGIN
The definition for PRINT is declared EXTERN. Another program (MAIN)
defines it.

(If you want to try this exercise, use the Editor to insert and save the first file as
MAIN/SRC and the second as LEDGER/SRC))

b. Insert a directive to search the global file

Notice the GLINK directive in the above program. This tells the Linker to look
for PRINT’s definition in a global file named MAIN/GBL.

c. Assemble the programs
Assemble MAIN and LEDGER in the normal way:

ALASM MAIN MAIN (ENTER
ALASM LEDGER LEDGER (ENTER

The Assembler creates MAIN/REL and LEDGER/REL.
d. Link the program which creates the GLLOBAL file

You must link MAIN/REL before linking LEDGER/REL.. This is because
MAIN/GBL. contains a GLOBAL symbol that must be available to link
LEDGER/REL. Type:

ALLINK MAIN MAIN %$=5208 (ENTER

The Linker assigns absolute addresses to MAIN/REL beginning with 5200H and
saves the resulting absolute file as MAIN.

It also processes the GLOBAL directive. This causes it to create a global file
named MAIN/GBL.. This file contains only a symbol table defining PRINT.

e. Link the program which uses the GLOBAL file
After creating MAIN/GBL., you can link LEDGER. Type:
ALLINK LEDGER LEDGER $=330@0

The Linker processes the EXTERN directive. This tells it to look for PRINT’s
definition in an outside file.

It then processes the GLINK directive. GLINK tells the Linker to look for
PRINT’s definition in a file named MAIN/GBL.

The Linker also assigns absolute addresses to LEDGER/REL beginning 5300H.

81

MODEL lil/4 ALDS

f. Executing the program
You now have two absolute program files:
MAIN and LEDGER

Type:
MAIN (ENTER

MAIN loads beginning at address 5200H and begins executing. It then loads
LEDGER beginning at address 5300H, which overlays the last portion of MAIN.

Note: In order for this program to run you must add the routines for CLS, EXIT,
LOADER and PRINTCHR. Refer to your TRSDOS manual for information on
how to execute these routines.

Notes And Options

ALDS offers several alternatives for linking programs:

° You can use INCLUDE rather than LINK. If you do this, you must include a
source file rather than a relocatable object file. INCLUDE is a directive which
the Assembler processes at assembly time. (See INCLUDE)

* You can use REF to reference only the symbol definitions of a source file only.
(See REF)

» You can create indirect LINK files composed solely of LINK directives. By
doing this, you can create several files containing different combinations of
program sections. An example of this is PROG4 and PROGIII in Chapter 1.

» You can use EXT rather than GLINK to combine absolute, as well as
relocatable symbols. EXT is a directive to the Assembler (whereas GLINK is a
directive to the Linker)

Index Sections

ALDS contains directives which allow you to create an index section. They are:

* JSECT — begins an index section

» ENDI— ends an index section

» USING — associates an index register with an index section
= DROP - drops the index association established by USING

An index section is for EQUating symbols you want to use as offsets from an
index register. For example:

PROG PSECT S000H

ISECT i ibedinsg index section 1

82

DIRECTIVES

DATA EQU 10H

ENDI jends index section 1

LD IX4000H

USING 141X jassociates IX
iwith the svmbol
fin index
isection 1

1.D A+ (DATA) yloads A indexed
iwith IXy which
fwill be (IX+
iDATA) or
1 (4000H+10H)

DROP 1 sdrors association
10f IX and index
isection 1

LD A+ {(DATA) iloads A with (DATA)

iwhich 1s (10H)

Index section 1 (ISECT 1) equates DATA to 10H. USING associates all the
symbol equations from ISECT 1 with index register IX. This means any time a
symbol from ISECT 1 appears in the program, the Assembler generates an
instruction to access memory with the indexed addressing mode (IX + the
displacement value).

Later in the program, the Assembler encounters the symbol DATA (defined in
ISECT 1.) The Assembler sets DATA as an offset to the IX register so that when
you run the program, the processor will add DATA to the contents of register IX
(The contents of register IX remains unchanged.)

Then the Assembler DROPs the association between IX and ISECT 1. After
DROPping the association, the Assembler interprets DATA as simply DATA.

You car. temporarily clear a USING association and return to it later with:

« APUSH — saves the current USING associations in an Assembler stack

e APOP — restores the USING status saved with APUSH by ““popping”’ it from
the Assembler stack

For more information, see the individual definitions of each directive.

Macro Sections

ALDS allows you to define your own ‘““macro’ symbol as a group of Z80
instructions. Whenever the Assembler encounters this macro symbol, it expands
it into its defined Z80 instructions.

83

MODEL Ili/4 ALDS

For example:

START PSECT 7000H
DISPLAY MACRO # ibedins macro
isection defining
iDISPLAY #L
i(#l is a dJummy
irparameter)
LD HL »#L
LD By (HL)
INC HL
LD A+ {HL)
CALL PRINTCHR
DJUNZ)
ENDM iends macro section
3
BEGIN DISPLAY FIRST icall DISPLAY and
ipass it FIRST
3
DISPLAY SECOND icall DISPLAY and
irass 1t SECOND
3
JP HIT iJump to TRSDOS
9
FIRGT DEFT ‘THIS IS THE FIRST SENTENCE’
SECOND DEFT "AND THIS IS THE SECOND‘
END BEGIN

The MACRO section begins with MACRO and ends with ENDM and in this
example defines a MACRO named DISPLAY which displays a dummy parameter
named #L..

The program then calls the DISPLAY macro and passes it the parameter FIRST.
The Assembler expands this DISPLAY instruction into its macro definition,
substituting FIRST for #L.:

LD HL+FIRST
LD B+ (HL)
INC HL

L.D A (HL)
CALL PRINTCHR
DJNZ $-35

Next, the program calls the DISPLAY macro passing it the parameter SECOND.
This expands into:

LD HL »SECOND
LD By (HL)
INC HL

LD A (HL)

84

DIRECTIVES

CALL PRINTCHR
DJNZ $-3

When you assemble this program, notice that the macro SECTION (not the
macro CALL) is for the Assembler’s memory only. It is not assembled as part of
the executable program.

For more information on macros, see MACRO.

IF Sections

An “IF” section is a section of your program you only want assembled if a
certain condition is true. ALDS offers these directives for conditional sections:
*» [FT — assembile if operand is a true expression

» JFF— assemble if operand is a false expression

¢ IFZ — assemble if operand equals zero

* [FNZ — assemble if operand does not equal zero

e JFP — assemble if operand is positive

* [FM — assemble if operand is negative

* IFDEF — assemble if operand is a defined symbol

» [FUND — assemble if operand is an undefined symbol

* ELSE — assemble if IF condition is false

» ENDIF — end conditional section

For example, assume you want to create two versions of a program — a Model 4
version and a Model III:

START PSECT 7002H
MoD4 EQU Y idefines MOD4
jlany value will do)
BEGIN LD B3
H
IFDEF MoD4 jassemble the following
sIF MOD4 is DEFined
H
CALL ABCD 3
3
ELSE iassemble the following
yif ABCD is NOT defined
H
JP KIT fJump to TRSBDOS
H
ENDIF JEND the IF section
END BEGIN

IF the program defines the symbol MOD4, the Assembler processes CALL
ABCD or ELSE it processes CALL EXIT.

85

MODEL lil/4 ALDS

The above program defines MOD4. The Assembler processes CALL ABCD,
thereby producing a Model 4 version of the program. To have the Assembler
return to TRSDOS, delete the MOD4 EQU 0 directive.

Assembler Listing Commands

Assembler listing commands change the way the Assembler processes the listing.
ALDS offers these listing commands:

° EJECT — ejects the printer listing to the next page
° VERSION — prints the time on the second line

» TITLE - prints a title on the third line

» HEADER — prints a heading on the fourth line

* PRINT —- prints or does not print what you specify

See each directive listing for more information

Other Assembler Commands

The remaining Assembler commands are:

» ADISP — displays or prompts you for information

* NOLOAD —- assembles in memory image form

» OBJ — specifies the object file name to use

° PATCH — fills the remaining bytes in a sector with FF’s to create a patch area

Assembler Directives Reference

The following pages list the syntax and a brief definition of the assembler
directives available with ALLDS. This is a definition of the terms used in the
syntax:

expression
a valid assembler expression. (See Chapter 7.)

absolute expression

an expression with an absolute (non-relocatable, non-external) value. This can
include a relocatable symbol as long as the resulting value is absolute. See
Chapter 7.

expression list
one or more expressions, separated by commas.

location
an expression designating an assembly location.

86

DIRECTIVES

filespec
a TRSDOS file specification (see your Owner’s Manual).

string
a string of ASCII characters. The entire line must be 78 characters or less.

symbol
a one to ten character name which you may reference in your program.

symbol list
one or more symbols, separated by commas.

ADISP

ADISP 'string"symbol’
ADISP 'string"symbol’

Displays or inputs certain parameters during the assembly of your program. You
can specify one or both of these parameters:

(1) a string to be displayed
(2) a symbol to be displayed or input

Model 4: CTRDMD
Model III: SHIFD=)D

inserts the " character which causes the Assembler to display the symbols value.

Model 4: CTRDSHIFD(®
Model III: SHIFN(=)®)

inserts the ~ character which causes the Assembler to prompt you to input the
symbol’s value.

The Assembler executes ADISP during pass one only.
Example:
ADISP 'THE VALUE OF START IS “START'

causes the Assembler to display: THE VALUE OF START IS followed by the
value of the symbol START.

ADISP ‘WHAT IS5 THE VALUE OF START “START'’

displays WHAT IS THE VALUE OF START? . . . You can then input a
hexadecimal value for START.

ADISP ‘This is mv Messade’
displays the message.
ADISP '°%°

displays the current address of the PC (program counter) register.

87

MODEL lil/4 ALDS

ADIGP ‘NEW ORIGIN “STARTLOC
ORG STARTLOC

displays NEW ORIGIN? and prompts you to input a value for STARTLOC. The
next instruction resets the location counter to the value you input. Note that
ADISP 'NEW ORIGIN “$’ does not accomplish the same thing.

APOP PRINT
APOP USING
APOP PRINT,USING

Restores the PRINT or USING status which was saved by a previous APUSH
instruction.

Example:

APOP USING

restores the USING status.

APOP USING,PRINT

restores both the USING and PRINT status.

APUSH

APUSH PRINT
APUSH USING
APUSH PRINT, USING

Pushes the current PRINT and/or USING status into an assembly stack. Use
APOP to get this current status back from the stack.

You may nest APUSH only one level deep. That is, you can not use APUSH
twice without an APOP in between them.

Examples:

APUSH USING

saves the USING status.

APUSH USINGsPRINT

saves both the USING and PRINT status.

APUSH is useful when you want the Assembler to treat a certain section of your
program differently. For example:

88

DIRECTIVES

MAIN PRINT ON
PRINT CON
PRINT SHORT
APUSH PRINT
PRINT OFF
CALL 5UB1
APOP PRINT

When the Assembler encounters APUSH PRINT, the current status of PRINT is
ON, CON, SHORT (print the first 6 bytes of all source lines, including
conditionals).

The Assembler PUSHes this status into an assembly stack and turns PRINT OFF.
This causes it not to print any lines in SUBI.

The Assembler then POPs the PRINT ON, CON, SHORT status back from the
stack, which causes it to restore the printing status.

DATE

symbol DATE

Stores the current date in memory beginning with the current address. The
optional symbol labels this address.

The Assembler stores the date as a string in the form of Day of Week, Month
Date, Year (Model 4) or MM/DD/YY (Model III).

For example, if today’s date is Saturday, February 29, 1984:
DATE
stores SAT FEB 29, 1984 in Model 4 memory, or 02/29/84 in Model III memory.

DEFB

symbol DEFB expression
symbol DEFB absolute expression list
symbol DEFB absolute repeat count% absolute expression

Stores one or more one-byte expressions in memory beginning with the current
address. The optional symbol labels this address. The optional repeat must be in
the 1-255 range and will repeat a single absolute expression only.

89

MODEL lil/4 ALDS

TCONY DEFB NUM

stores NUM in the current memory address, defined as TCONV. NUM must be
in the range of one byte numbers (—256 to + 255 decimal).

If you use multiple expressions, all of them must be absolute. For example:
QEYM: DEFB 7 +9BHBTABLE+3

stores decimal 7 at QSYM, the current memory address. Hexadecimal 9B and
BTABLE + 3 are stored in the next two bytes. None of these bytes can be
relocatable. BTABLE must be defined in the existing program unit.

DEFB 1287 %~
fills the next 128 bytes with the character '*’.
You can substitute BYTE or DB for DEFB.

DEFE

symbol DEFE 'string’

Stores an “‘encrypted’’ string in memory beginning with the current memory
address. The optional symbol labels this address.

Using DEFE makes it difficult for users to read the string by listing the object
code. The first byte contains the unencrypted length of the string. The following
bytes contains each character code XOR'd with 55H.

Example:
MESSAGE DEFE ‘hidden data’

stores ‘hidden data’ in the next 12 bytes and names the first byte MESSAGE. The
first byte contains an @BH (decimal 11). The next bytes contain codes for "hidden
data’.

DEFL

symbol DEFL expression

Defines symbol as expression. DEFL allows you to redefine a symbol in the same
program. For example:

IMMED DEFL 3

ADD A IMMED
IMMED DEFL 12

ADD A IMMED

defines IMMED as 5 and adds it to the contents of register A. The next
instruction defines IMMED as 12 and adds this to the contents of A.

90

DIRECTIVES

Once you define a symbol with DEFL, you should not attempt to define it with
EQU, EXTRN, or use it as a label.

DEFM

'symbo/ DEFM 'string’

Stores string in memory beginning with the current address. The optional symbol
labels this address. For example:

MESS5AGE DEFM ‘THIS IS5 THE MESSAGE’

stores "THIS IS THE MESSAGE' in the next 19 bytes and names the first byte
MESSAGE.

You can use these two special characters in the string:

o the tilde ““™”’ (typed as CTRDSHIFD(E) on the Model 4 and GHIFD(=)®) on the
Model II) to store a carriage return (hexadecimal 0D).

o the circumflex """ (typed as onthe Model 4 and SHIFD&)T) on the
Model III) to toggle the high bit (80H) on and off.

For example:

TEXT DEFM “".J"OHN BROWN™M STREET’

stores JOHN BROWN then a carriage return followed by M STREET in the next
19 bytes and flags the letter J by setting the high bit. J is stored as 0CAH, the
code for J, plus 80H.

You can substitute ASCII for DEFM.

DEFR

symbol DEFR 'decimal number’

Converts a decimal number into a Roman numeral string and stores it in memory
beginning at the current address. The first byte contains the hexadecimal length
of the Roman numeral string. The following bytes contain the ASCII codes for
the Roman numerals.

The decimal number must be in the range of 1 to 65535. The optional symbol
allows you to name the first address.

For example:
DEFR 19817

stores MCMLXXXI in the next 9 bytes. The first byte contains 8, the length of
the Roman numeral string.

91

MODEL lil/4 ALDS

DEFS

symbol DEFS absolute expression

Reserves expression bytes, beginning with the current address, for storage. The
optional symbol names this storage area.

This Assembler will not insert anything in the reserved area unless the FILL
mode is in effect (see FILL).

Example:

ORG 7000H
BUF1 DEFS 10@H
BUF2 DEFS 5@H
BUF3 DEFS 10
START LD HL sBUF1

assigns BUF1 to location 7000H, BUF2 to 7100H, and BUF3 to 7150H. START
begins execution at location 7160H, loading HL with 7000H.

You can substitute DS or BLOCK for DEFS.

symbol DEFT ’string’

Stores string in memory, beginning with the current address. The optional
symbol labels this address. The first byte contains the length of the string. You
may use the two special characters described under DEFM (the tilde and the
circumflex).

For example:
MESSAGE DEFT ‘this is mvy messade’

stores the number 12H (decimal 18) in the next byte of memory and ’this is my
message’ in the following 18 bytes; then assigns the name MESSAGE to the
address of the first byte.

symbol DEFW expression
symbol DEFW absolute expression list
symbol DEFW absolute repeat count% absolute expression

Stores one or more two-byte expressions in memory beginning with the current
memory address. The optional symbol labels this address. The least significant

92

DIRECTIVES

byte is stored first, followed by the most significant byte. The optional repeat
must be in the 1-127 range and will repeat a single absolute expression only.

Examples:
MAXCNT DEFW 1000

stores decimal number 1000 in the next two bytes and labels that location as
MAXCNT. Since 1000 decimal is O3E8H, the first byte contains E8H and the
second byte contains 03H.

DEFW 3333 VAL

stores 3333 and VAL in the next four bytes. The same rules that DEFB uses for
multiple expressions apply here. VAL must be defined in the existing program
sections. Relocatable and external expressions may be used only if DEFW has a
single, non-repeated expression.

DEFW 30741000
fills the next 30 words with decimal 1000s, repeated 30 times.
You can substitute DW or WORD for DEFW.

DROP

DROP 1
DROP 2
DROP

Terminates the index register association, specified by USING, with ISECT 1,
ISECT 2, or all the ISECTs. This allows you to change USING associations.
For example:

DROP 1

The index register is no longer associated with ISECT 1.

DROP

The index register is no longer associated with any of the ISECTs.

EJECT

EJECT

During the assembly listing, causes the printer to go to the next page before
listing the next instruction. The EJECT instruction will not appear in the listing.

END

END address

Ends the assembly of the source program. The optional address causes the
Assembler to store the entry address of the program.

93

MODEL lil/4 ALDS

Examples:
END 7FFFH

ends assembly and stores address 7FFFH in the assembled file as the entry point
of the program. When you load the assembled file, it will immediately begin
execution at address 7FFFH.

END BEGIN
ends assembly and stores the address defined by BEGIN as the entry address.
END

ends assembly of the program. Since no entry point is specified, the Assembler
stores it as absolute zero. This is an invalid entry point for TRSDOS. Therefore,
you will be able only to load this program with the LOAD command —- not
execute it.

ENDI

ENDI
Marks the end of an index section, initiated by ISECT.

ENDM

ENDM
Ends a macro definition, initiated by MACRO.

EQU

symbol EQU expression

Equates a symbol to an expression. For example:

START EQU S5Z200H

causes the symbol START to be equal to hexadecimal 5200.

POINT EQU 15+8TART

equates POINT to 5215, the sum of 15 and START.

Symbols defined by EQU may not be defined elsewhere in the program.

EXT

EXT ‘filespec’

Tells the Assembler that the absolute definitions for certain symbols in your
program are contained in the specified global file (created by GLOBAL). Since

94

DIRECTIVES

these symbols will have an established value at assembly time, you should not
declare them EXTERNal or define them elsewhere in the program.

You can specify only one filespec per EXT instruction. It must have a /GBL
extension. If you omit /GBL, the Assembler will automatically append it.

The EXT statement allows the programmer to have several absolute object files
“talk” to each other. This requires considerable prior planning, but is useful and
powerful.

Since EXT includes only the symbol definitions of the external program and not
the program code, you will need to load the external program before attempting
to use code in it.

For example:

EXT ‘PROG1/GBL’
EXT 'PROGZ’

tells the Assembler that your program contains symbols which are defined in
PROG1/GBL and PROG2/GBL.

EXTERN

EXTERN symbol list

Declares that one or more symbols are not defined in the existing main program.
They are defined externally in either:

* an external program section (which contains a corresponding PUBLIC
instruction), or

* an external global file (which was created by a corresponding GLOBAL
instruction).

For example:

KTERN LOOPL sLOOP2
declares that LOOP1 and LOOP2 are defined externally.
You may substitute EXTRN for EXTERN.

FILL

FILL

Causes any subsequent storage areas, initiated by DEFS, to be filled with zeros.
Use NOFILL to turn it off.

95

MODEL lli/4 ALDS

For example:

FILL

BUF1 DEFS 100
NOFILL

BUF2 DEFS 200

BUF1 is filled with zeros. BUF2 is not filled with zeros.

You can use FILL only with DEFS instructions which reserve 255 or less bytes.

GLINK

GLINK 'filespec’

Tells the Linker that the absolute definitions for certain symbols in your program
are contained in the specified global file (created by GLOBAL). Your program
must also contain an EXTERN instruction for each of the symbols referenced, to
avoid undefined symbol errors.

You can specify only one filespec per GLINK instruction. It must have a /GBL
extension. If you omit /GBL, the Linker will automatically append it.

GLINK accomplishes the same function as EXT, except it is an instruction to the
Linker, rather than the Assembler. Because of this you need not have the external
file written at assembly time, but you must have it loaded when you link the
program.

For example:

GLINK ‘PROGIL’
GLINK ‘PROGZ’

tells the Linker that your file contains certain symbols which are defined in
PROG1/GBL and PROG2/GBL.

GLINK must be the last instruction in your program before LINK, END, or
another GLINK.

GLOBAL

GLOBAL symbol list

Declares one or more symbols as global and stores their values in a “global” file.
Like PUBLIC, this permits another program section to use the same symbols.
GLOBAL, however, goes one step further. It stores these symbois in a global file.

The global file will contain a symbol table only. It will define the absolute values
of all the global symbols. If your program is absolute, the Assembler will create
this global file. If your program is relocatable, the Linker creates it.

96

DIRECTIVES

For example:

PSECT 7008H
GLOBAL DATA
DATA DEFM ‘THIS STARTS A DATA TABLE'’

declares that DATA is a global symbol and stores DATA’s value, hexadecimal
7000, in a global file. Since this program is absolute, the Assembler will create
the global file.

PSECT
GLOBAL LOOPL sLOOP2

declares that LOOP1 and LOOP2 are global symbols to be stored in a global file.
Since this program is relocatable, the Linker will create the global file.

The global file will have the same name as the assembled object file with the
extension /GBL. You will be able to access this file with any other program,
provided it has these two instructions:

(1) GLINK, which specifies that some symbols in the global file should be used,
and

(2) EXTERN, which specifies which global (or external) symbol definitions
should be used

or simply:

(1) EXT, which tells the Assembler to look for the definitions of some symbols in
the global file

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,
not defined with REF, ASISP, or EXT. The Linker may flag these symbols as
undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or
GLOBAL. The Linker will flag these symbols as multiply defined.

HEADER

HEADER 'string’

Prints the specified string on the fourth line of each page in the assembly listing
until the Assembler encounters a new HEADER instruction. HEADER starts a
new page.

For example:
HEADER “‘Electronics’

causes the Assembler to print “‘Electronics’ on the fourth line of each page in
the assembly heading.

For the header string to appear on the first page, HEADER must precede all
listed instructions in the program. Otherwise, it ejects to the next page before

97

MODEL 11l/4 ALDS

printing the header string. TITLE, HEADER, and PRINT instructions are not
listed.

You must specify a string when using HEADER. You may substitute HEADING
for HEADER.

IFDEF
symbol IFDEF symbol

Assembles the following source lines IF the symbol is defined. IF NOT, the
Assembler goes to the next ELSE or ENDIF directive. The optional symbol
labels this directive.

IFDEF SYMBOL

assembles the next lines IF the program defines SYMBOL. If not, the Assembler
goes to the next matching ELSE or ENDIE If the symbol is defined at all, it must
be defined before the IFDEE

The Assembler will not print the IF sections (instructions beginning with an IF
directive and ending with ENDIF) unless PRINT CON is in effect. (See PRINT)

All IF directives are nestable to six levels.

IFF

symbol IFF expression

Same as IFDEF except the expression must be false for the next lines to be
assembled. For example:

IFF 3.GT.5YMBOL

assembles the next lines if 5 is not greater than SYMBOL..

IF

symbol IFM expression

Same as IFDEF except the expression must be negative for the next lines to be
assembled. For example:

IFM SYMBOL

assembles the next lines if SYMBOL is a negative number.

98

DIRECTIVES

IFNZ

symbol IFNZ expression

Same as IFDEF except the expression must not equal zero for the next lines to be
assembled. For example:

IFNZ SYMBOL

assembles the next lines if SYMBOL does not equal zero.

IFP

symbol IFP expression

Same as IFDEF except the expression must be positive for the next lines to be
assembled. For example:

IFP SYMBOL

assembles the next lines if SYMBOL is a positive number.

IFT

symbol IFT expression

Same as IFDEF except the expression must be true (that is, bit @ must be 1) for
the next lines to be assembled.

For example:
IFT 3.GT.BYMBOL
assembles the next lines IF 5 is greater than SYMBOL.

IFUND

symbol IFUND symbol

Same as IFT except the symbol must not be defined for the next lines to be
assembled. For example:

IFUND SYMBOL

assembles the next lines if the program does not define SYMBOL. If the symbol
is defined at all, it must be defined before the IFDEE

99

MODEL ill/4 ALDS

IFZ

symbol IFZ expression

Same as IFDEEF except the expression must equal zero for the next lines to be
assembled. For example:

IFZ §YMBOL
assembles the next lines if SYMBOL equals zero.

INCLUDE

INCLUDE 'source filespec’

Inserts filespec at the point where INCLUDE appears in the program. The
Assembler will assemble the INCLUDEGA file before processing the next
instruction.

The optional END instruction of the INCLUDEGA file tells the Assembler to
continue assembling the main program. The END of the main program will
terminate the assembly.

You may specify only one filename per INCLUDE. You may use as many
INCLUDE instructions as you want.

For example:
INCLUDE ‘PROGL’

inserts and assembles PROG1, a source file, before processing the next
instruction.

INCLUDE ‘PROGL’
INCLUDE ‘PROGZ’

inserts and assembles PROGI,; then inserts and assembles PROG2; then proceeds
with the next instruction.

INCLUDE is nestable to five levels. That is, file 1 can call file 2; 2 can call 3; 3
can call 4; and finally, 4 can call 5. But at no time can a called file (file 5) call a
calling file (file 4). This results in an Error 37— Open attempt for a file already
open.

ISECT

ISECT name

Begins an ““index section” of EQU instructions, terminated by ENDI. If you
wish, you can name the section 1 or 2 (no other names are allowed).

100

DIRECTIVES

Using an index section allows you to specify certain index symbols. You can then
use the index symbols to offset an index register.

For example, this is an index section named ISECT 1:

ISECT1
SYMBOL1 EQU ©
SMBL3 EQU 3
SMBLZ6 EQU Z6
SYMBL EQU 100

ENDI

It specifies four index symbols. Whenever the Assembler encounters one of these
index symbols enclosed in parentheses, it evaluates it as the expression:

(the contents of an index register + index symbol)

You must specify which index register to use with the USING instruction. For
example:

LD IY+7000H
USING 1sIY
LD A, (SYMBOLL)

The Assembler evaluates this as:

LD IY,7008H
USING1 s LY
LD As(I¥Y+SYMBOLL)

You cannot use a register name or a flag condition to name an index symbol.

LINK

LINK filespec’
LINK 'filespec(symbol)’

Tells the Linker to insert filespec, an absolute or relocatable object file, at the
point where LINK is encountered in the current program. This instruction is
similar to INCLUDE, except it applies only to the Linker. It allows you to link
one or more files together.

LINK must be at the end of your program section. (Only END, GLINK, or
another LINK can follow it.) Each LINK instruction can specify only one
filename. You can use as many LINK instructions as you want.

For example:

LINK ‘FILEL'
LINK ‘FILEZ’
END PROG

101

MODEL lil/4 ALDS

inserts FILE1 and then FILE2 at the end of your main program. FILE1 and
FILE2 must both be assembled object files.

LINK ‘TAX(TABLE) /

inserts a program section named TABLE which exists in a file named TAX at the
end of your program. TAX must be an object file. TABLE is a PSECT label.

The LINK statement is nestable to five levels. That is, file 1 can call file 2, 2 can
call 3, 3 can call 4, and finally, 4 can call 5. But at no time can a called file
(file 5) call a calling file (file 4).

LITORG

symbol LITORG location

Allows you to specify where to place literals used as operands. LITORG should
be used only once per assembly and placed in the same PSET as all references to
the literals, and after the last reference.

If you omit the optional location, the Assembler stores the literals in the current
location. If you include it, LITORG resets the location counter (in the same way
that ORG does) and stores the literals at the newly reset location.

The optional symbol labels this location. The Assembler assigns the remaining
instructions locations immediately following the literals.

All literal operands must be preceded by an equal sign (=) and surrounded with
single quotes ('). For example:

LD HLs="INPUT THE ITEM NUMBER'’

This instruction uses INPUT THE ITEM NUMBER as a literal operand. Here is
how you could use it in a program:

START PSECT 3200H
BEGIN LD HL»="INPUT THE ITEM NUMBER’
LD B+ (HL)
INC HL
CALL PRTCHR
CALL XIT
LITORG
DEFM ‘THIS 15 A LONG TABLE OF PROMPTS’
DEFM “INPUT THE ITEM NUMBER'’
DEFHM "INPUT THE PRICE’
DEFM ‘IS THERE A DISCOUNT?’
DEFHM "INPUT THE DISCOUNT'
END BEGIN

Notice that INPUT THE ITEM NUMBER is defined by DEFM later in the
program. The Assembler stores it in two locations: (1) the location where

102

DIRECTIVES

LITORG appears in the program, and (2) the location where DEFM "INPUT
THE ITEM NUMBER’ appears.

Note that if literals are used and the program ends with a LINK or GLINK,
LITORG is mandatory to place the literals before the LINK or GLINK
statement.

MACRO

name MACRO dummy parameter list

Begins a section of the program which defines a macro name. Use ENDM to end
this macro definition.

The optional dummy parameter list allows you to pass parameters to the macro.
You may use up to ten dummy parameters separated by commas. Each can be
only one character and must be preceded by a # sign.

Defining a macro allows you to ““call’’ an entire block of instructions with a
single program line. This is useful when you will be using the same block many
times in your program.

For example, this is a macro definition:
SCROLL MACRO

LD AsD
CALL PROTECT
ENDM

which defines a macro named SCROLL,, that protects 5 lines from scrolling.
Every time the Assembler encounters SCROLL, it “expands” SCROLL into the
LD A,5 and CALL PROTECT instructions. That is, if this is your source

program:
LD A3
SCROLL
LD HL sDATA

The Assembler will interpret SCROLL as a macro call and expand it into the
appropriate instructions:

LD A3
LD AT
cCALL PROTECT
LD HL :DATA

The next example defines a macro named ADNUM which acts on four dummy
parameters named #0, #1, #2, and #3:

103

MODEL ili/4 ALDS

ADNUM MACRO #HO 1 #L#21#3
ADD A #0
ADD Ar#l
ADD A2
ADD A #3
ENDHM

This definition allows you to *‘pass’ four values to ADNUM when you call it.
For example:

ADNUM Bs10NUMB LSBT

calls ADNUM and passes four values to it. The Assembler expands this macro
call into:

ADD AsB
ADD A:1@
ADD A NUMB
ADD ASLST

Notice that B, the first value, replaces #0, the first parameter; 10 replaces #1;
NUMB replaces #2; and LST replaces #3.

When using a macro, remember that you must define it before you use it. You
might want to put all the macro definitions in one file and then INCLUDE or
REF them at the beginning of your main file.

We do not recommend that you use a macro name which is the same as an
extended mnemonic or directive name. If you do this, the Assembler will use the
definition you assigned the macro. This will of course give undesirable results.

When using dummy parameters, be sure not to insert them inside quoted strings.
If you do this, the Assembler will treat them as ordinary characters.

A macro cannot call another macro.

NOEND

NOEND

Ends the assembly of a non-executable program. The Assembler marks the
assembled code as load-only and will not execute the file when used as a
TRSDOS command. This command is useful for creating overlays to be loaded
with the CMDDOS system call.

NOFILL

NOFILL
Terminates the mode initiated by FILL.

104

DIRECTIVES

NOLOAD

NOLOAD

Assembles the program sequentially in memory image form, rather than in the
standard TRSDOS object format. You must use NOLOAD as the first line of the
main source file (before comments, titles, PSECT, etc.), otherwise some
TRSDOS object code load headers may be placed into the file.

You cannot use NOLOAD with these features:

¢ the relocatable mode
« EXTERNal, or PUBLIC symbols
e LINK or GLINK

If you want the file to contain an accurate memory image of the program, you
must also avoid these instructions:

« DEFS(unless the FILL mode is on)
¢« ORG
o more than one PSECT

(These instructions change the value of the location counter but do not output
object code. This causes the load address and location counter to differ.)

OoBJ

OBJ 'filespec’

Tells the Assembler that it should write the assembled filespec to disk. The
Assembler will ignore this instruction if you specify an object filespec in the
assembly command line.

Example:
0BJ ‘ACCOUNTS'

Unless you specify an object filespec in the assembly command line, the above
instruction saves the assembled object program as ACCOUNTS.

ORG

symbol ORG location, boundary

Resets the Assembler’s location counter to the specified location. For example, in
an absolute program:

ORG GR0O0H

resets the location to an absolute 6000H.

105

MODEL lll/4 ALDS

In a relocatable program:
ORG GOBOH

resets the location counter to a relocatable 6G00H. Assuming you link the
program to an absolute start address of 5200H, the Linker determines the
effective address to be B20QH (the sum of 5200 and 6000.)

The second parameter allows you to reset the location counter to a boundary
divisible by decimal 2, 4, 8, 16, 32, 64, 128, or 256. For example, if the value of
the counter is currently 6005H:

ORG 44

resets the counter to 6008H, which is the next highest number divisible by
decimal 4.

Unlike many other assemblers, ORG will not initialize the location counter. You
need to use PSECT for this purpose.

ORG will not change the location counter from the relocatable to the absolute
mode, or vice versa. You must assemble absolute and relocatable programs as
different files.

location may not be an external symbol.

PATCH

PATCH

Fills the remaining bytes in the last sector in the assembled object file with FF’s.
This reserves an area for patches.

The Assembler will print a message on pass 2 giving the address and length of
the patch area (if the file produces object code).

This must be the last command prior to the END directive. You cannot use it with
LINK, and it is for use with absolute assemblies only.

PRINT

PRINT command list

Controls what is printed or not printed in the assembly listing. You may use one
or more of the following commands, separated by commas or blank spaces:

ALL — print all source lines (Same as ON,MAC,CON)
ON — print all normal open code source instructions
OFF — do not print anything except error messages and diagnostics until

(1) the end of the assembly or (2) a PRINT ON command

106

DIRECTIVES

MAC — print all source lines generated in macro expansions (except those
which might be overridden by other PRINT options).

NOMAC — do not print source lines generated by macro expansions. Only the
macro instruction itself will appear in the listing file.

CON — print all conditional assembly source lines, whether they generate
code or not.

NOCON — print only the conditional assembly source lines that generate code.

LST — output the listing, regardless of what was on the command line. The

listing will be printed on the video, and if the D or P options were
specified, the listing will also go to disk or to the printer. You cannot
save this option with APUSH.

NOLST — do not output a listing, regardless of what was on the command line.

SHORT — print only the first 6 bytes of object code generated by each line.

LONG — print all of the object code generated, even if it requires several
lines.

For example:
PRINT MACSHORT

prints all the macro expansions in the assembly listing. It limits printing to the
first six bytes of object code for each line.

Only PRINT instructions specifying OFF, NOMAC, and NOCON will appear in
the listing.

You can use comments with PRINT.
PRINT defaults to ON, MAC, NOCON, LONG.

PSECT

symbol PSECT location

Initializes the Assembler’s location counter to a relocatable zero or to the
absolute location you specify. The Assembler assembles all subsequent
instructions sequentially throughout the program.

The optional symbol labels the program section and can be up to six characters.
This symbol is for the Linker, and will be listed on the Linker map. The symbol
will not be defined by the Assembler and cannot be used in expressions.

PSECT begins an independent, executable ‘‘program section’. You can have
several relocatable program sections in one program file. One program section
cannot use symbols from another program section unless you declare them
EXTERN and PUBLIC.

For example:

PAYROLL PSECT
Bobe’ BEGIN LD A3

107

MODEL lll/4 ALDS

PAYABLE PSECT
eeao -’ PUSH A

END

This program has two sections: “PAYROLL” and “PAYABLE’’ Both begin with
a relocatable 0000. When you link this file, the Linker assigns ‘“PAYABLE”
addresses which immediately follow ‘“PAYABLE’’ Since no symbols are
declared PUBLIC and EXTERNal, “PAYROLL"” and ‘“PAYABLE" cannot share
the same symbols.

The following instructions do not have to be part of a program section:

° comments

° index sections

» conditional assembly instructions

° mMacro sections

* macro instructions (which will not affect the location counter)

° EQU or DEFL (as long as they do not reference the location counter)
» assembler directives (which do not affect the location counter)

You can define symbol (with EQU, for example) prior to your first PSECT. This
permits you to use a conditional assembly such as:

IFT RELOC
i PSECT
ELSE
RYL PSECT 5200H
ENDIF

which starts a relocatable PSECT if RELOC equals 1, and an absolute PSECT if
RELOC equals 0. Doing this will create two PSECTs with the same name, one
being zero-length. This will appear on the Linker map but it will not affect the
assembly.

The PSECTs within an assembly must either be all relocatable or all absolute.
Relocatable and EXTERN expressions cannot be used in absolute assemblies.

The PSECT location you specify cannot be an external value.

PUBLIC

PUBLIC symbol list

Declares one or more symbols as “‘public’’ This permits another program section
to use the same symbols.

When you assemble a program with public symbols, the Assembler will mark all
their definitions. Then, when you link it to an external program section, the
Linker will insert these definitions in the Linker Symbol Table.

108

DIRECTIVES

For example:
PUBLIC LOOPL
declares LOOPT’s definition to be public.

Another program can use the public symbol definitions provided it contains a
corresponding EXTERN directive.

You can substitute ENTRY for PUBLIC.

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,
not defined with REF, ADISP, or EXT. The Linker may flag these symbols as
undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or
GLOBAL. The linker will flag these symbols as multiply defined.

QUIT

QUIT

Quits the assembly and returns to TRSDOS Ready. This Assembler only
recognizes this instruction at the second pass of a listing (specified by the L
assembly option). It will not save the object file.

RADIX

RADIX expression

Specifies expression as the default number base. That is, the Assembler will
interpret any numbers without a base suffix in the default base.

You may use any expression with a value of 2, 8, 10, or 16. Without RADIX, the
Assembler defaults to 10 (decimal).

For example:
RADIX 16

causes the Assembler to interpret all the numbers which do not have “‘b”’ or “‘d”’
suffixes as hexadecimal numbers.

Remember that the Assembler uses the current default base to evaluate your
RADIX instruction. For example, if you want to change the default base of 16 to
10, use RADIX 10d or 0A, not RADIX 10. While in base 16, the Assembler
would evaluate the 10 as a hexadecimal 10.

Example:
RADIX 10H iUse Hexadecimal
DEFB iB i This is 1B (hex)=27 (decimal)

109

MODEL lil/4 ALDS

DEFB ib i This is 1 (hinary)

DEFB 25 i This is 25 (hex)=37 (decimal)
RADIX 10 1 Radix is still hex (1@ hex=

i 16 decimal)

SERROR 10D hex=2BY9 decimal -

¥ too larde.

RADIX 18D

4
RADIX 184 i Radix is now decimal
DEFB iB i This is a 1 binmary
DEFB ib i This is also a 1 bivnary
DEFB 25 i This is 23 (decimal)=19 (hex)

REF

REF 'source filename'

Includes only the symbol definitions from the specified source file. This is useful
for referencing a file of EQU directives or MACROs.

REF tells the Assembler to INCLUDE the source file during Pass 1 only. After
processing the source file, the Assembler restores the location counter to its
original value. Thus, the Assembler uses the referenced file’s symbols, but not its
assembled code.

For example:
REF ‘TEST/SRC’

The Assembler will define macros and symbols contained in TEST/SRC. It will
not insert the code for TEXT/SRC.

The Assembler will not report any errors in the referenced file. Also, if there is a
conflict between symbols of the referenced file and the main program, the first
definitions will be used with no error message. You might want to use INCLUDE
instead of REF until all conflicts have been resolved.

Symbols defined in the REF file should not be declared PUBLIC or GLOBAL.
The Linker may flag these symbols as undefined.

RESLOC

RESLOC location

Resets the location counter to the location computed as:

the value of the counter prior
to executing SETLOC

the number of bytes of code

* | generated by the SETLOC block

For example, assuming the value of the location counter was 6000H prior to
SETLOC and there are two 3-byte instructions following SETLOC:

110

DIRECTIVES

RESLOC

resets the location counter to 6006H.

SETLOC

SETLOC Jocation

Temporarily changes the location counter’s value to the absolute location
specified. The Assembler uses this changed location for defining symbols only. It
does not use the changed location for assembling the instructions.

For example:

7000 LD A3
SETLOC GOOoH
G@0@ POS PUSH AF

The actual PUSH AF instruction is not stored at location 6000H. Rather, it is
stored at 7002H, the location which immediately follows LD A,3. However, the
Assembler defines POS, the symbol which labels the location of PUSH AF, as
6000H.

SETLOC is useful anytime you are writing a routine which you want to load in
one location, and then move and execute at a different location. By using
SETLOC, the Assembler defines this routine’s symbols as if they were already in
their execution location.

For example, you might want to run a memory test from a very low memory
address. You cannot load it on top of TRSDOS. However, after loading it, you
can move and execute it in that location. Since TRSDOS will be overwritten, the
memory test must do its own input/output.

Using SETLOC, you could write the routine this way:
PSECT SBROH

5100 MOVE EQU $ $GETLOC block hedins
SETLOC S00H
500 LOOP LD A3
. icode for memory
560 ° itest
RESL.OC
5200 LDBLOCK EQU $-MOVE $SETLOC blocK ends
LD HL sMOVE tmove SETLOC block
LD DE:LOQOP ito its proper loop
LD BC,LDBLOCK
LDIR
JP LOOP

111

MODEL lli/4 ALDS

Here, the Assembler defines LOOP as though it were at address 500H — the
address the program will eventually move it to. However, it actually assembles
the code for LOOP at address 5100H.

MOVE defines where the actual assembled code of the SETLOC block (ended by
RESLOC) begins. LDBLOCK defines the length of the SETLOC block by
subtracting MOVE from the current contents of the PC register. (The $ sign
indicates the current value of PC).

LDIR then moves the SETLOC block from location 5100, defined by MOVE, to
location 500. Since LOOP has already been defined as if it were at location 500,
you do not have to redefine it.

Note: If your program is relocatable, SETLOC still sets an absolute location.
You need to avoid using these instructions within the SETLOC block: ORG,
DEFS (unless the FILL mode is in effect), PSECT, and relocatable and external
expressions.

STOP

STOP

Stops the assembly listing. Press any key to continue the listing. Press (BREAK) to
abort it.

TIME

symbol TIME

Stores the time in memory as a string beginning at the current address. The
optional symbol labels this address. For example if the time is 1:45 p.m. and 55
seconds when the Assembler reaches this instruction:

TIME

it will store the string 13.45.55 (Model 4) or 13:45:55 (Model III) in the next
eight bytes of memory.

TITLE

TITLE 'string’

Prints the specified string on the third line of each page in the assembly listing.
For example:

TITLE ‘THIS IS THE TITLE’
prints THIS IS THE TITLE on the third line of every page.

112

DIRECTIVES

If you are using both TITLE and HEADER, TITLE should precede HEADER
(otherwise the TITLE will not appear until the next page).

USING

USING index section name, index register
USING index register, expression
USING index register

Associates an index register —1X or I'Y — with the index sections. For example:
USING "

associates IX with all the ISECTS.

You can optionally specify one (but not both) of the following:

° an index section name (1 or 2), as the only section to be associated with
the register

e an expression to be loaded into the register

For example:

USING 141X

associates the IX register with ISECT 1 only.

USING IX,DCB

loads IX with the value of DCB, then associates IX with all the ISECTs.
The index sections are specified with the ISECT instruction.

USING does not apply to any external program sections.

VERSION

VERSION

Prints the current time on the second line of the assembly listing heading.

* (block comment)

*®

Turns on and off the block comment function. The asterisk must be in the first
column.

113

MODEL lli/4 ALDS

When the Assembler encournters a line beginning with an asterisk, it begins
interpreting the lines as comments rather than instructions. The next asterisk ends
the block comment.

For example:

*
The following Pprodram is a + »

Note: Be careful when using the asterisk. One asterisk out of place near the
beginning of your program can cause the Assembler to treat most of your
program as a comment. If a block comment is placed before a header created by
the TITLE directive, the title will not appear on the first page of the assembly
listing.

114

Z-80 MNEMONICS

Chapter 9/
Z-80 Mnemonics

This section contains a description of each z-80 mnemonic, organized as follows:

8 Bit Load Group

16 Bit Load Group

Exchange, Block Transfer and Search Group
8 Bit Arithmetic and Logical Group

General Purpose Arithmetic and CPU Control Groups
16 Bit Arithmetic Group

Rotate and Shift Group

Bit Set, Reset and Test Group

Jump Group

Call and Return Group

Input and Output Group

Please note than you can specify the PO (parity odd) and PE (parity even)
conditions with NV and V. For example:

JP PO, 1000H
JP NV, 1000H

Both of these instructions tell the Assembler to branch to 1000H if there is the
Parity is Odd, which means there is No Overflow.

JP PE, 1000H
JP 'V, 1000H

These instructions tell the Assembler to branch to 1000H if the Parity is Even,
which means there is an overflow.

115

Z-80 MNEMONICS

The Z-80 Instruction Set

Notation and Other Conventions

This section includes a detailed description of all the z-80 assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no
operands at all. Other instructions have one or two operands. Anything which is
capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LDrr

LD is the mnemonic for the Load instruction. If you wish to move the contents of
register H into register A, the actual source code is

LD AH
This should be read as ‘‘load register A with the contents of register H.”

A detailed explanation of the operand notation is given below, but in general you
should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC HL
means that 1 is to be added to the HL register pair. The instruction INC (HL) means
that 1 will be added to a number in memory whose address is found in register
pair HL.

Symbol Specifies one of the registers
r A,B,C,D,E, H,Or L.

Symbol Specifies a register pair

qq BC, DE, HL, OT AF

ss BC, DE, HL, Of SP

dd BC, DE, HL, Or SP

pPp BC, DE, IX, Or SP

rr BC, DE, IY, Of SP

Symbol Specifies a number or symbol in the range
n 0 to 255 (one byte)

nn 0 to 65535 (two bytes)

d — 128 to 127 (one byte)

e — 126 to 129 (one byte)

117

MODEL lil/4 ALDS

Symbol Specifies any of the following

S r, n, (HL), (IX+d), or (IY +d)

m 1, (HL) (1X +d), or (1y +d)

(nn) Specifies the contents of memory location nn

b Specifies an expression in the range (0,7)

cc Specifies the state of the Flags for conditional IR, JP, CALL and

RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)

Operation: I I (HL)

This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r. :

When you write the assembly language code, the lowercase r will be replaced by
A,B,C,D E,HorlL.

Format:
Mnemonic: LD Operands: r,(HL)

Object Code:

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code Object Code
LD A,(HL) 01111110
LD B,(HL) 01000110
LD C,(HL) 01001110

This instruction uses two machine (M) cycles. The first machine cycle consists of
four timing (T) states and the second machine cycle consists of three T states for
a total of seven T states. One T state takes approximately 250 nanoseconds for a
4MHz machine and 500 nanoseconds for a 2MHz machine. The execution time
(ET), in microseconds, is calculated for the TRS-80. (One microsecond is 107°
seconds or 1/1,000,000 of a second.)

118

Z-80 MNEMONICS

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75
Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75 A1H
contains the byte 58H, the execution of

LD C, (HL)

will result in S8H in register C.

Format Example 2

JP cc,nn
Operation: IF cc TRUE, PC ann

The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program to
jump to address nn.

When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number from
0 to 65535 or a label.

Format:
Mnemonic: JP Operands: cc, nn

Object Code:

] J I I I f I

1 1 ¢cc ¢cc cc O 1 O
T T R TR R

I I] I] I I

| | ! I] | |

119

[

MODEL lill/4 ALDS

Note: The first n operand in this assembled object code is the low order byte of a
two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object
code, replace bits 3, 4 and 5 of the first byte with the appropriate number from
the table. The second two bytes of the object code are the address being jumped
to. For example:

Source Code Object Code

JP NZ, 0FF00H 11000010 C2H
00000000 OOH
11111111 FFH
JP M, 1002H 11111010 FAH
00000010 O2H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as usual,
and the program continues with the next sequential instruction. Condition cc is
programmed as one of eight status bits which correspond to condition bits in the
Flag Register (register F). These eight status bits are defined in the table below
which also specifies the corresponding cc bit fields in the assembled object code.

The Relevant Flag column shows the value the flag must have if the jump is to
occur.

Relevant
cc Condition Flag
000 NZ non zero Z =10
001 Z zero Z =1
010 NC no carry C =0
011 C carry Cc =1
100 PO parity odd or no overflow PV =0
101 PE parity even or overflow PV =1
110 P sign positive S =0
111 M sign negative S =1
M cycles: 3 T states: 10(4,3,3) 4 MHzET.: 2.50

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are O3H, after the execution of

120

Z-80 MNEMONICS

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from address 1520H the byte @3H. In other words, program execution
jumps to the instruction at 1520H.

Format Example 3

CPIR

Operation: A — (HL), HLGHL +1, BC¢BC -1

The shorthand description indicates that three different things are happening:
1. BC is decremented
2. HL is incremented

3. A byte in memory is subtracted from the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

Object Code:
T T T T T
1 1. 1 0 1 1 0 1 ED
[N SN TR T E R
T T T T T
1|0|1|1l01010!1 B1

The assembly language instruction has no operands.
The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL. is incremented and the Byte Counter (register pair
BC) is decremented. If decrementing causes the BC to go to zero or if A= (HL),
the instruction is terminated. If BC is not zero and A # (HL), the program
counter is decremented by 2 and the instruction is repeated. Note that if BC is set
to zero before the execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.

For BC#0 and A # (HL):
M cycles: 5 T states: 21(4,4,3,5,5) 4 MHzET.:5.25

121

MODEL Iil/4 ALDS

For BC=0 or A=(HL):
M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

The total execution time of this instruction depends on how long it takes to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC =0 or A =(HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte
Counter contains 0007H, and memory locations have these contents:

(1111H) : 52H

(1112H) : 00H

(1113H) : F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC # 0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, the Z flag is set.

The CPIR instruction will affect five of the six condition codes.

122

8 BIT LOAD GROUP

8 Bit Load Group

LD I,r ’ LoaD

Operation: I (I’

Format:

Mnemenic: LD Operands: r, r’

Object Code:

Description:

The contents of any register r’ are loaded into any other register r. Note: r, r’
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in the
object code:

Register rr'
A = 111
B = 000
C 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4MHzET.: 1.0
Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction
LD H,E

would result in both registers containing 10H.

123

MODEL 1li/4 ALDS

LD rn LoaD

Operation: I 4N

Format:

Mnemonic: LD Operands: r, n

Object Code:

Description:

The eight-bit integer n is loaded into any register r, where r identifies register A,
B,C,D, E, HorL, assembled as follows in the object code:

Register r
A = 111
B = 000
c = o001
D = 010
E = 011
H = 100
L = 101
M cycles: 2 T states: 7(4,3) 4MHzET.:1.75

Condition Bits Affected: None

Example 1:

After the execution of
LD E,AS5H
the contents of register E will be ASH.

Example 2:

After the execution of
LD A0
register A will contain zero.

124

8 BIT LOAD GROUP

LD I’,(H L) LoaD

Operation: I (HL)

Format:
Mnemonic: LD Operands: r, (HL)

Object Code:

Description:

The eight-bit contents of memory location (HL.) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101
M cycles: 2 T states: 7(4,3) 4MHzET.: 175

Condition Bits Affected: None

Example:

If register pair HL. contains the number 75A1H, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)
will result in 58H in register C.

LD r,(IX +d) LoaD

Operation: I { (IX+4d)

Format:

Mnemonic: LD Operands: r, (IX +d)

125

MODEL ili/4 ALDS

Object Code:
T T T

| | | } | | |

I I | I I]]

Description:

The operand (IX + d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C,D, E, Hor L, assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101
M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction
LD B,IX+ 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in memory
this program will load the first four bytes of the table into registers A, B, C and
D.

LD IX, TABL ; IX points to the table
LD A, (IX4+0) ; Load first byte

LD B, (IX+1) ; Load second byte
LD C,IX+2) ; Load third byte

LD D, IX+3) ; Load fourth byte

126

8 BIT LOAD GROUP

LD (Y +d) LoaD

Operation: I ¢ (IY +d)

Format:

Mnemonic: LD Operands: r, 1Y +d)

Object Code:

11 1 1 1 1 0 1 FD

Description:

The operand (1Y +d) (the contents of the Index Register I'Y summed with a two’s
complement displacement integer d) is loaded into register r, where r identifies
register A, B, C, D, E, H, or L., assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.:4.75
Condition Bits Affected: None

Example:

If the Index Register I'Y contains the number 25AFH, the instruction
LD B,dY + 19H)
will cause the calculation of the sum 25AFH + 19H, which points to memory

location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

127

MODEL lil/4 ALDS

LD (HL)r LoaD
Operation: (HL) (r

Format:
Mnemonic: LD Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, D, E, H
or L, assembled as follows in the object code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101
M cycles: 2 T states: 7(4,3) 4 MHz ET.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B
memory address 2146H will also contain 29H.

LD (lX + d),r LoaD

Operation: (IX+d) {r

Format:

Mnemonic: LD Operands: (IX+d),r

128

8 BIT LOAD GROUP

Object Code:
1 T T T T 1

| | | | | I |

I | I I] I I

Description:

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, a two’s complement displacement
integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as
follows in the object code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.:4.75
Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register IX contains
3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1CH into memory location
3106H.

LD (!Y + d),r LoaD

Operation: (IY +d) {r

Format:

Mnemonic: LD Operands: (IY +d), r

129

MODEL lil/4 ALDS

Object Code:

I [I I I f |

11 1 1 1t 1 0 1 FD
SN SR NN DO E N

i] I { ! I]

Description:

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register I'Y and d, a two’s complement
displacement integer. The symbol r is specified according to the following table.

Register r
A = 111
B = 000
¢ = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.:4.75
Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index Register [Y contains
2A11H, then the instruction

LD {IY+4H),C

will perform the sum 2A11H +4H, and will load 48H into memory location
2A15.

LD (HL),n LoaD

Operation: (HL) 4n

Format:

Mnemenic: LD Operands: (HL), n

130

8 BIT LOAD GROUP

Object Code:

o o 1 1 0 1 1 O 36

Description:

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4MHz ET.:2.50
Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction
LD (HL),28H
will result in the memory location 4444H containing the byte 28H.

LD (IX + d),n Load

Operation: (IX+d) dn

Format:

Mnemonic: LD Operands: (IX+d), n

Object Code:
T T T T T]
1 1 0 1 1 1 0 1 DD
R W NN TN WO T
T T T T
o 0 1t 1 0 1t 1 0 36

131

MODEL lll/4 ALDS

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two’s complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz ET.: 4.75
Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction
LD (IX+5H),5AH

would result in the byte SAH in the memory address 219FH.
(219FH = 219AH + 5H.)

LD (IY +d),n LoaD

Operation: (IY +d) {n

Format:
Mnemonic: LD Operands: (IY +d), n

Object Code:
T T T T T 1
11 1 1 1 1 0 1 FD
(AR VR WA N N B
| S R S R B
0 01 1 0 1 1 0 36

Description:

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two’s complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.: 475

Condition Bits Affected: None

132

8 BIT LOAD GROUP

Example:

If the Index Register I'Y contains the number A940H, the instruction
LD (dY+10H),97H
would result in byte 97H in memory location A950H.

LD A, (BC) LoaD
Operation: A { (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

A B R E B
0|0|0|0;1;0|1|0 0A

Description:

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75
Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,BC)
will result in byte 12H in register A.

LD A,(DE) LoaD

Operation: A ¢ (DE)

Format:

Mnemonic: LD Operands: A, (DE)

133

MODEL iil/4 ALDS

Object Code:

6 0o 0 1 1 O 1 O 1A

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3) 4MHzET.: 175
Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,DE)
will result in byte 22H in register A.

LD A,(nn) LoaD

Operation: A { (nn)

Format:

Mnemenic: LD Operands: A, (nn)

Object Code:

] I I I I i I

0 0 11 1 0 1 O 3A
[N N NN A SO S

I] I [l I [
n n n n n n n n

Description:

The contents of the memory location specified by the operands nn are loaded into
the Accumulator. The first n operand is the low order byte of a two-byte memory
address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz ET.: 3.25

134

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction
LD A,(8832H)
byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) ¢ A

Format:
Mnemonic: LD Operands: (BC), A

Object Code:

T T T T T 1
010‘01010|0|1|0 02

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHzET.: 175
Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair contains 1212H the
instruction

LD (BC),A
will result in 7AH being in memory location 1212H.

LD (DE),A LoaD

Operation: (DE) qA

Format:

Mnemonic: LD Operands: (DE), A

135

MODEL Ili/4 ALDS

Object Code:

0 0 01 0 0 1 O 12

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHzET.: 175
Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
AQH, the instruction

LD (DE),A
will result in AQH being in memory location 1128H.

LD (nn),A LoaD

Operation: (nn) QA

Format:

Mnemonic: LD Operands: (nn), A

Object Code:
N R R N B N

| | | | | | {

I I I | | { |

Descriptien:

The contents of the Accumulator are loaded into the memory address specified by
the operands nn. The first n operand in the assembled object code above is the
low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4MHz ET.:3.25

136

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A
D7H will be in memory location 3141H.

LD Al LoaD

Operation: A (|

Format:

Mnemonic: LD Operands: A, |

Object Code:
T T T T T 1
1 1.1 0 1 1 0O 1 ED
SR N N N R
T T T T 1T 1
0 1 0 1 0 1 1 1 57
[T S B S N B
Description:

The contents of the Interrupt Vector Register I are loaded into the Accumulator.
M cycles: 2 T states: 9(4,5) 4MHz ET.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if [-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.
Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of
LD A
the accumulator will also contain 4AH.

137

MODEL 1li/4 ALDS

LD AR LoaD
Operation: AR
Format:

Mnemonic: LD Operands: A, R

Ohbject Code:
N N I A I B
1 1.1 0 1 1 0 1 ED
WU N T T B W
T T T T T 1
0 1 0 1 1 1 1 1 5F
A RN N NSO TR
Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4MHz ET.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of [FF2

N: Reset

C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of
LD AR
the Accumulator will also contain 4AH.

LoaD

Operation: | 0 A

Format:

Mnemonic: LD Operands: I, A

138

8 BIT LOAD GROUP

Object Code:
| R R B B B
1 11 0 1 1 O 1 ED
I I R TR B T
T T T T T
O|1|0|0|0|1|1|1 47
Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, I.

M cycles: 2 T states: 9(4,5) 4MHzET.:2.25
Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction
LD LA
the Interrupt Vector Register will also contain 81H.

LD R,A LoaD

Operation: R ¢ A

Format:
Mnemonic: LD Operands: R, A

Object Code:
T T T T T 1
1 110 1 1 0 1 ED
[S T T B
N N I R R
0o 1t 0 0 1 1 1 1 4F
[N T T B N
Description:

The contents of the Accumulator are loaded into the Memory Refresh register R.
M cycles: 2 T states: 9(4,5) 4MHzET.:2.25

Condition Bits Affected: None

139

MODEL lil/4 ALDS

Example:
If the Accumulator contains the number B4H, after the instruction

LD R,A
the Memory Refresh Register will also contain B4H.

140

16 BIT LOAD GROUP

16 Bit Load Group
LD dd,nn LoaD

Operation: dd ¢ nNn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

0 06 d d 0 0 0 1
I NS NN NN B NN

] I !] I I I

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SpP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3) 4MHzET.:2.50
Condition Bits Affected: None

Example:

After the execution of
LD HL,5000H
the contents of the HL register pair will be S000H.

141

MODEL Ill/4 ALDS

After the execution of
LD BC,2501H
the BC register will contain 2501H.

LD IX;nn

Operation: [X NN

Format:

Mnemonic: LD Operands: X, nn

Object Code:
T T T T T
1 1 0 1 1 1 0 1 DD
R TR Y U N S
T T T T T 1
0O 01 0 0 0 0 1 21

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50
Condition Bits Affected: None

Example:

After the instruction
LD IX,45A2H
the Index Register will contain integer 45A2H.

LoaD

142

16 BIT LOAD GROUP

LD IY,nn LoaD

Operation: |Y<:l nn

Format:

Mnemonic: LD Operands: 1Y, nn

Object Code:
T T T T T
1 1.1 1 1 1 0 1 FD
(NN SR N N R N
T T T T T 1
0 0 1 0 0 0 0 1 21

Description:

Integer nn is loaded into the Index Register I'Y. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHzET.:3.50
Condition Bits Affected: None

Example:

After the instruction:
LD 1Y,7733H
the Index Register I'Y will contain the integer 7733H.

LD HL,(nn) LoaD

Operation: H{ (nn+1), LG (nn)

Format:

Mnemonic: LD Operands: HL, (nn)

143

MODEL lii/4 ALDS

Object Code:

] I I] I I I

OIOlI‘O!llOIIIO 2A

|]] I | | |

| | | |] { {

f | I ! I] |

| | I | | I |

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn+ 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4MHzET.:4.00
Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A1H, after the
instruction
LD HL,(4545H)

the HL register pair will contain A137H.

LoaD
Operation: ddy, ¢ (nn+ 1), dd, ¢(nn)

Format:
Mnemonic: LD Operands: dd, (nn)

Object Code:

I] I I I I]

1 11 0 1 1 0 1 ED
SN S N N R S

I I I | | I |

| | | | | | |

144

16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn+ 1) are loaded into
the high order portion of dd. Register pair dd defines BC, DE, HL, or SP register
pairs, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

Mcycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.:5.00
Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)
the BC register pair will contain 7865H.

Example 2:

If address FFFE contains @1H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)
the SP will contain 0201H.

LD 1X,(nn) LoaD

Operation: IXy ¢ (nn+1), IX_ ¢ (nn)

Format:

Mnemonic: LD Operands: IX, (nn)

145

MODEL lil/4 ALDS

Object Code:
T T T T T 1
I 1.0 1 1 1 0 1 DD
I SO Y T N
T T T T T 1
0 o1 0 1 0 1 0 2A

Description:

The contents of the address nn are loaded into the low order portion of Index
Register IX, and the contents of the next highest memory address (nn+ 1 are
loaded into the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.:5.00
Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)

the Index Register IX will contain DA92H.

LD TY, (ﬂ ﬂ) LoaD
Operation: IY ¢ (nn+1), 1Y, 4(nn)

Format:

Mnemonic: LD Operands: 1Y, (nn)

146

16 BIT LOAD GROUP

Object Code:
T T T T T
1 1 1 1 1 1 0 1 FD
[N N N RN
T T T T T
0o 0 1. 0 1 0 1 O 2A

Description:

The contents of address nn are loaded into the low order portion of Index
Register 1Y, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IY. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.:5.00
Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction
LD IY,(6666H)

the Index Register I'Y will contain DA92H.

LD (nn),HL LoaD

Operation: (NN+ 1) ¢H, (Nn) ¢L

Format:

Mnemonic: LD Operands: (nn), HL

147

MODEL lli/4 ALDS

Object Code:

I 1 I I |]

0 60 1 0 0 O 1 O 22
S S R N N S

I] I I]] |

Description:

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn+ 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4MHzET.: 4.00
Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction
LD (B229H),HL
address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL. contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE + 1 will contain 50H.
Nete: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (NN + 1) ¢ddy, (nn) ¢dd,

Format:

Mnemonic: LD Operands: (nn), dd

148

16 BIT LOAD GROUP

Object Code:

I ! I] | | f

1 110 1 1 0 1| ED
R S TN T O

Description:

The low order byte of register pair dd is loaded into memory address (nn); the
upper order byte is loaded into memory address (nn + 1). Register pair dd defines
either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
Sp 11

The first n operand in the assembled object code is the low order byte of a two
byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHzET.:5.00
Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction
LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in memory
location 1001H.

LD (nn),IX LoaD

Operation: (NN + 1) G 1Xy, (Nn) 41X,

Format:

Mnemonic: LD Operands: (nn), IX

149

MODEL lil/4 ALDS

Object Code:
N R R B I B
1 1.0 1 1 1 O 1 DD
S SR SR A S
T T T T T 1
0 0 1 0 0 01 O 22

Description:

The low order byte in Index Register IX is loaded into memory address nn; the
upper order byte is loaded into the next highest address (nn -+ 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.: 5.00
Condition Bits Affected: None

Example:

If the Index Register IX contains SA30H, after the instruction
LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will
contain SAH.

LD (nn), Y LoaD

Operation: (NN-+1) 1Yy, (Nn) ¢1Y,

Format:

Mnemonic: LD Operands: (nn), [Y

150

16 BIT LOAD GROUP

Object Code:
T T T T T
1 1.1 1 1 1 0 1 FD
Lol
R . R
0O 0 1.0 0 0 1 O 22

Description:

The low order byte in Index Register 1Y is loaded into memory address nn; the
upper order byte is loaded into memory location (nn + 1). The first n operand in
the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4MHzET.:5.00
Condition Bits Affected: None

Example:

If the Index Register I'Y contains 4174H after the instruction
LD 8838H,IY

memory location 8838H will contain number 74H and memory location 8839H
will contain 41H.

LD SP,HL LoaD

Operation: SP { HL

Format:
Mnemonic: LD Operands: SP, HL

Object Code:

1 11 1 1 0 0 1 F9

Description:

The contents of the register pair HL. are loaded into the Stack Pointer SP.

151

MODEL lli/4 ALDS

M cycles: 1 T states: 6 4MHz ET.: 1.50
Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction
LD SPHL
the Stack Pointer will also contain 442EH.

LD SPIX
Operation: SP ¢ 1X

Format:

Mnemonic: LD Operands: SP, IX

Object Code:
1T T 1T T T 1
1 1.0 1 1 1 0 1 DD
IS B NS N NN B
— T T T 1 T 1
i1 11 1 1 0 0 1 F9
A WO N TN B N
Description:

LoaD

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LD SPIX
the contents of the Stack Pointer will also be 98DAH.

152

16 BIT LOAD GROUP

LD SP,'Y LoaD

Operation: SP q Y

Format:

Mnemonic: LD Operands: SP, IY

Object Code:
I B R R
1 1.1 1 1 1 0 1 FD
I S T IO SO I
T T T T T 1
1 1.1 1 1 0 0 1 F9
I Y T O R
Description:

The two byte contents of Index Register I'Y are loaded into the Stack Pointer SP.
M cycles: 2 T states: 10(4,6) 4MHzET.: 2.50

Condition Bits Affected: None

Example:

If Index Register I'Y contains the integer A227H, after the instruction
LD SPIY
the Stack Pointer will also contain A227H.

PUSH qq

Operation: (SP —2) 4qq,, (SP—1)¢qaqy

Format:

Mpnemonic: PUSH Operands: qq

Object Code:

153

MODEL lil/4 ALDS

Description:

The contents of the register pair qq are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current *‘top”” of the Stack. This instruction first decrements the
SP and loads the high order byte of register pair qq into the memory address now
specified by the SP, then decrements the SP again and loads the low order byte of
qq into the memory location corresponding to this new address in the SP. The
operand qq means register pair BC, DE, HL, or AF, assembled as follows in the
object code:

Pair aq
BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 11(5,3,3) 4MHzET.:2.75
Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. In other words the number from
register pair AF is now on the top of the stack, and the stack pointer is pointing
to it.

Before:
Register AF Address Stack
2233 1007 FF
1008 35
Stack Pointer
1007

After: PUSH AF
Register AF Address Stack

2233 1005 33
1006 22
1007 FF
1008 35
Stack Pointer
1005

154

16 BIT LOAD GROUP

PUSH IX

Operation: (SP—2) {1X, (SP—-1)qIXy

Format:
Mnemonic: PUSH Operands: IX

Object Code:

T T T T T 1
111|01111|1|0|1 DD
T T T T 1T 1
111r11010|11011 E5
Description:

The contents of the Index Register IX are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current “‘top”” of the Stack. This instruction first decrements the
SP and loads the high order byte of IX into the memory address now specified by
the SP, then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M cycles: 3 T states: 15(4,5,3,3) 4 MHz ET.: 3.75
Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IX
memory address 1006H will contain 22H, memory address 1005H will contain

33H, and the Stack Pointer will contain 1005H. The number from the IX register
pair is now on the top of the stack.

Before:
Register IX Address Stack
2233 1007 FF
1008 35
Stack Pointer
1007

155

MODEL lll/4 ALDS

After: PUSH IX
Register IX Address Stack

2233 1005 33
1006 22
1007 FF
1008 35
Stack Pointer
1005

PUSH IY

Operation: (SP —2)4Q IYL, (SP -1) alYy

Format:

Mnemonic: PUSH Operands: [Y

Object Code:
T T T T T 1
1 1 1 1 1 1 0 1 FD
R N N R N T
T T T T T 1
1 1.1 0 0 1 0 1 E5
S TR EOURY S B
Description:

The contents of the Index Register I'Y are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current *‘top’” of the Stack. This instruction first decrements the
SP and loads the high order byte of I'Y into the memory address now specified by
the SP; then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M cycles: 4 T states: 15(4,5,3,3) 4MHzET.:3.75
Condition Bits Affected: None

Example:

If the Index Register I'Y contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH 1Y

156

16 BIT LOAD GROUP

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from register pair
IY is now on the top of the stack.

Before:
Register 1Y Address Stack
2233 1007 FF
1008 35
Stack Pointer
1007

After: PUSH IY
Register I'Y Address Stack

2233 1005 33
1006 22
1007 FF
1008 35
Stack Pointer
1005

POP qqg

Operation: Q< (SP + 1), aq, ¢ (SP)

Format:

Mnemonic: POP Operands: qq

Object Code:
T T T T T]
111|q|q10|0|0|1

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit
address of the current “‘top’’ of the Stack. This instruction first loads into the

low order portion of qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of qq and the SP
is now incremented again. The operand qq defines register pair BC, DE, HL, or
AF, assembled as follows in the object code:

157

MODEL lil/4 ALDS

Pair r

BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.: 2.50
Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP HL

will result in register pair HL containing 3355H, and the Stack Pointer
containing 1002H. In other words register pair HL contains the number which
was on the top of the stack, and the stack pointer is pointing to the current top of
the stack.

Before:
Register HL. Address Stack
2233 1000 55
1001 33
1002 A4
1003 62
Stack Pointer
1000

After: POP HL
Register HL Address Stack

3355 1002 A4
1003 62
Stack Pointer
1002

POP IX

Operation: IX, ¢ (SP + 1), IX_ ¢ (SP)

Format:
Mnemonic: POP Operands: IX

158

16 BIT LOAD GROUP

Object Code:
T T T T 1T 1
1 1 0 1 1 1 0 1 DD
I N N SO R
T T T T 1 1
1 1 1.0 0 0 0 1 El
IS I R S N
Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IX. The Stack Pointer (SP) register pair holds the 16-
bit address of the current ““top”” of the Stack. This instruction first loads into the
low order portion of IX the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP is
now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4MHzET.:3.50
Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer
containing 1002H. Register pair IX contains the number which used to be on the
top of the stack.

Before:
Register IX Address Stack
24F9 1000 55
1001 33
1002 Ad
1003 62
Stack Pointer
1000

159

MODEL lli/4 ALDS

After: POP IX
Register IX Address Stack

3355 1002 Ad
1003 62
Stack Pointer
1002

POP Y

Operation: 1Y, 4 (SP +1),IY, {(SP)

Format:
Mnemonic: POP Operands: 1Y

Object Code:
T T T T T 1
1 11 1 1 1 0 1 FD
R AU RSN SN SR S
T T T T T 1
111111010:01011 El
Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register ['Y. The Stack Pointer (SP) register pair holds the
16-bit address of the current ““‘top”” of the Stack. This instruction first loads into
the low order portion of I'Y the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IY. The SP is
now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4MHzET.:3.50
Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains S5H, and
location 1001H contains 33H, the instruction

POP 1Y
will result in Index Register I'Y containing 3355H, and the Stack Pointer

containing 1002H. Register pair I'Y contains the number which used to be on the
top of the stack.

160

16 BIT LOAD GROUP

Before:

Register I'Y
24F9

Stack Pointer
1000

After: POP

Register IY
3355

Stack Pointer
1002

Address

1000
1001
1002
1003

IY

Address

1002
1003

Stack

55
33
A4
62

Stack

A4
62

161

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Exchange, Block Transfer
and Search Group

EX D E, H L EXchange

Operation: DE an HL

Format:

Mnemonic: EX Operands: DE, HL

Object Code:

1 11 0 1 O 1 1| EB

Description:
The two-byte contents of register pairs DE and HL are exchanged.

M cycles: 1 T states: 4 4MHzET.: 1.00
Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and the content of the
register pair HL is number 499AH, after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the content of register pair HL
will be 2822H.

EX AF‘;AF’ EXchange

Operation: AF {0 AF'

Format:

Mnemonic: EX Operands: AF, AF’

163

MODEL li/4 ALDS

Ohject Code:
T T T T T 1
0|010‘0!1!01010 08

Description:

The two-byte contents of the register pairs AF and AF' are exchanged.
(Note: register pair AF’ consists of registers A’ and F.")

M cycles: 1 T states: 4 4MHzET.: 1.00
Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register
pair AF’ is number 5944H, after the instruction

EX AFAF'

the contents of AF will be 5944H, and the contents of AF’ will be 9900H.

EXchange
operation: (BC) () (BC'), (DE) &) (DE'), (HL) ¢ (HL")

Format:

Mnemonic: EXX Operands:
Object Code:

1 1.0 1 1 0 0 1 D9

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the two-
byte value in BC,’ DE," and HL,’ respectively.

M cycles: 1 T states: 4 4 MHz ET.: 1.00
Condition Bits Affected: None

Example 1:

If the contents of register pairs BC, DE, and HL are the numbers 445AH,
3DA2H, and 8859H, respectively, and the contents of register pairs BC,” DE,’
and HL' are 0988H, 9300H, and OOE7H, respectively, after the instruction

164

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EXX

the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H; HL.:
OOETH; BC': 445AH; DE': 3DA2H; and HL': 8859H.

Example 2:

If the contents of the registers are as shown:
BC : 1111H

DE : 2222H

HL : 3333H

BC’ . 4444H

DE’ : 5555H

HL' : 6666H

Then after an EXX instruction the registers will contain:
BC . 4444H

DE : 5555H

HL : 6666H

BC’ . 1111H

DE’ o 2222H

HL' : 3333H

EX (SP), HL EXchange

Operation: H () (SP + 1), L @) (SP)

Format:

Mnemonic: EX Operands: (SP),HL

Object Code:

1 1.1 0 O O 1 1| E3

Description:

The low order byte contained in register pair HL is exchanged with the contents
of the memory address specified by the contents of register pair SP (Stack
Pointer), and the high order byte of HL is exchanged with the next highest
memory address (SP+ 1).

M cycles: 5 T states: 19(4,3,4,3,5) 4 MHzET.: 4.75

Condition Bits Affected: None

165

MODEL lli/4 ALDS

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the
memory location 8856H contains the byte 11H, and the memory location 8857H
contains the byte 22H, then the instruction

EX (SP),HL
will result in the HL register pair containing number 2211H, memory location

8856H containing the byte 12H, the memory location 8857H containing the byte
70H and the Stack Pointer containing 8856H.

Before:
Register HL Address Stack
7012 8856 11
8857 22
8858
Stack Pointer
8856
After:
Register HL Address Stack
2211 8856 12
8857 70
8858
Stack Pointer
8856

EX (S P), IX EXchange

Operation: X, <0 (SP + 1), IX, & (SP)

Format:

Mnemonic: EX Operands: (SP), IX

Object Code:
T T T T
i1 1.0 1 1 1 0 1 DD
[S SR N R NN
T T T T T
1l1l1I0‘0‘011I1 E3

166

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Description:

The low order byte in Index Register IX is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer), and
the high order byte of IX is exchanged with the next highest memory address
(SP+1).

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0100H, the
memory location @100H contains the byte 90H, and memory location §101H
contains byte 48H, then the instruction

EX (SP),IX
will result in the IX register pair containing number 4890H, memory location

®100H containing 88H, memory location 0101H containing 39H and the Stack
Pointer containing 0100H.

Before:
Register IX Address Stack
3988 0100 90
0101 48
Stack Pointer
0100
After:
Register IX Address Stack
4890 0100 88
0101 39
Stack Pointer
0100

EX (S P), Y EXchange

Operation: [Y <0 (SP + 1), IY_ &) (SP)

Format:

Mnemonic: EX Operands: (SP), I'Y

167

MODEL [il/4 ALDS

Object Code:
1T 1 T T T 71
1 11 1 1 1 0 1 FD
W S N N N N
T T T T T 7T
1 1.1 0 0 0 1 1 E3
Loy
Description:

The low order byte in Index Register IY is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer), and
the high order byte of I'Y is exchanged with the next highest memory address
(SP+1).

M cycles: 6 T states: 23(4,4,3,4,3,5) 4MHzET.:5.75
Condition Bits Affected: None

Example:

If the Index Register I'Y contains 3988H, the SP register pair contains 0100H, the
memory location @100H contains the byte 90H, and memory location 0101H
contains byte 48H, then the instruction

EX (SP),IY
will result in the 1Y register pair containing number 4890H, memory location

0100H containing 88H, memory location @101H containing 39H, and the Stack
Pointer containing 0100H.

Before:
Register [Y Address Stack
3988 0100 90
0101 48
Stack Pointer
0100
After:
Register 1Y Address Stack
4890 0100 88
0101 39
Stack Pointer
0100

168

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LDI

Operation: (DE) @ (HL), DEGDE+1, HLGHL+1,BC4BC—1

LoaD & Increment

Format:
Mnemonic: LDI Operands:
Object Code:
T T T T T 1
1 1.1 0 1 1 0 1 ED
Lo
N I R N R
1|0|1|0|0|01010 AOQ
Description:

A byte of data is transferred from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the
DE register pair. Then both these register pairs are incremented and the BC (Byte
Counter) register pair is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4MHzET.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC — 1 +# 0; reset otherwise
N: Reset

C. Not affected

Example 1:

If the HL. register pair contains 1111H, memory location 1111H contains the byte
88H, the DE register pair contains 2222H, the memory location 2222H contains

byte 66H, and the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and memory addresses:
HL 1112H

(1111H) 88H

DE 2223H

(2222H) 88H

BC 6H

169

MODEL lil/4 ALDS

and the condition Bits will be:

LI Jofilo] |

S Z HPV N C

Example 2:

If the contents of registers and memory are as shown:
HL : 7CO0H

(7C00) : FFH

DE : 3C00H

(3C00) : 0OH

BC : 1H

Then after an LDI instruction the registers and memory will contain the
following:

HL . 7CO1H
(7C00)y : FFH
DE : 3CO01H
(3C00) : FFH
BC : OH

and the condition bits will be:

L [[ofofo] |

S Z HPV N C

Example 3:

The following program will move 80 consecutive bytes from BUF1 to BUF2:

LD HL, BUF1

LD DE, BUF2

LD BC, 80

LOOP LDI

JpP NZ, LOOP

LDHR LoaD Increment & Repeat

Operation: (DE) ¢ (HL), DE4DE+1, HLHL+1, BC¢BC -1

Format:

Mnemonic: LDIR Operands:

170

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If decrementing causes
the BC to go to zero, the instruction is terminated. If BC is not zero the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

For BC+0:

M cycles: 5 T states: 21(4,4,3,5,5) 4MHzET.:5.25
For BC=0:

M cycles: 4 T states: 16(4,4,3,5) 4MHz ET.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Reset

N: Reset

C: Not affected
Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the
BC register pair contains 0003H, and memory locations have these contents:

(1111H) : 88H (2222H) : 66H
(1112H) : 36H (2223H) : 59H
(1113H) : ASH (2224H) : CSH

then after the execution of
LDIR

171

MODEL lil/4 ALDS

the contents of register pairs and memory locations will be:

HL : 1114H
DE : 2225H
BC . 0000H
(1111H) : 88H (2222H) : 88H
(1112H) : 36H (2223H) : 36H
(1113H) : ASH (2224H) : ASH

and the H, P/V, and N flags are all zero.

E..,,D D LoaD Decrement

Operation: (DE) { (HL), DEGDE—-1, HLGHL -1, BC(:] BC-1

Format:

Mnemonic: LDD Operands:

Object Code:

N I E N R B
1;1z11011|110|1 ED
/S B A R N R
110|1|0|110r010 A8
Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these register
pairs, including the BC (Byte Counter) register pair, are decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHzET.: 4.00

Condition Bits Affected:

S Not affected

Z Not affected

H: Reset

P/V: Set if BC — 1 #0; reset otherwise
N: Reset

C Not affected

172

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte
88H, the DE register pair contains 2222H, memory location 2222H contains byte
66H, and the BC register pair contains 7H, then the instruction

LDD
will result in the following contents in register pairs and memory addresses:
HL : 1110H
(1111H) : 88H
DE : 2221H
(2222H) : 88H
BC : 6H
and the condition bits will be:
L [Jofife[|
S Z HPV N C
Example 2:
If the contents of registers and memory are as shown:
HL : 7CFFH
(7CFF) : 3CH
DE : 3CFFH
(3CFF) : 00H
BC : 1H
Then after a LDD instruction the registers and memory will contain the
following:
HL : 7TCFEH
(7CFF) : 3CH
DE . 3CFEH
(3CFF) : 3CH
BC : OH
and the condition bits will be:
L | [ofofo] |

S Z HPV N C

LDDR LoaD Decrement & Repeat
Operation: (DE) 0 (HL), DEGDE -1, HL¢HL -1, BC¢BC—1

Format:
Mnemonic: LDDR Operands:

173

MODEL lil/4 ALDS

Object Code:

1 11 0 1 1 0 1 ED

1 011 1 0 0 O B8

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these registers

as well as the BC (Byte Counter) are decremented. If decrementing causes the
BC to go to zero, the instruction is terminated. If BC is not zero, the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

For BC+0:

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz ET.: 5.25
For BC=0:

M cycles: 4 T states: 16(4,4,3,5) 4 MHzET.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Reset

N: Reset

C: Not affected
Example:

If the HL. register pair contains 1114H, the DE register pair contains 2225H, the
BC register pair contains 0003H, and memory locations have these contents:

(1114H) : ASH (2225H) : CSH
(1113H) : 36H (2224H) : 59H
(1112H) : 88H (2223H) : 66H

then after the execution of
L.DDR

174

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

the contents of register pairs and memory locations will be:

HL : 1111H
DE : 2222H
BC . 0000H
(1114H) : ASH (2225H) : ASH
(1113H) : 36H (2224H) : 36H
(1112H) : 88H (2223H) : 88H

and the H, P/V, and N flags are all zero.

CPI ComPare & Increment

Operation: A — (HL), HLOHL +1, BC ¢BC -1

Format:

Mnemonic: CPI Operands:

Object Code:
T T T T T 1
1 1 1 0 1 1 0 1 ED
SR T N T T T
N I A N R B
i1 01 0 0 0 0 1 Al
[T T TN T
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A =(HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

175

MODEL lll/4 ALDS

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the
Accumulator contains 3BH, and the Byte Counter contains 0001H, then after the
execution of

CPI
the Byte Counter will contain 0000H, the HL register pair will contain 1112H,
the Z flag in the F register will be set, and the P/V flag in the F register will be

reset. There will be no effect on the contents of the Accumulator or address
1111H.

If the contents of memory and registers are as shown

HL : 8A00H
(8AQ0H) : 6DH

A : 75H
BC : SH

Then during the execution of a CPI instruction the Arithmetic and Logic Unit
will do the following subtraction:

Borrow needed here
=

75H = 0111 0101
— 6DH = 0110 1101

8H = 0000 1000

After CPI is executed registers and memory will contain the following:

HL : 8AOQIH
(8AO0OH) : 6DH

A . 75H
BC . 4H

and the condition bits would be:

lololrlatrl |
| I I 1)
S Z HPV N C
result positive o o o o <« <o notaffected
match not found always set
borrow from bit 4 BC not zero
Example 3:

The following program is used to verify that the contents of two 80-byte buffers
are identical. Each time a mismatch is found the program calls a subroutine
called ERROR.

176

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

STRT LD HL, BUF1
LD DE, BUF2
LD BC, 80
LOOP LD A, (DE)
CPI
CALL NZ, ERROR
INC DE
JR PO, LOOP
END
CPBR ComPare Increment & Repeat

Operation: A— (HL), HLGHL +1, BC(BC -1

Format:

Mnemonic: CPIR Operands:

Object Code:
T | T T 1
1 11 0 1 1 0 1 ED
| | [T T B
T T 7 I— I
1 01 1 0 0 O 1 B1
Lo | [R
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the

Z condition bit is set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to go to zero or if

A = (HL), the instruction is terminated. If BC is not zero and A # (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC+#0 and A+ (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4MHzET.:5.25
For BC+0 or A= (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHzET.: 4.00

177

MODEL lil/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator (Register A) contains
F3H, the Byte Counter contains 0007H, and memory locations have these
contents:

(1111H) : 52H
(1112H) : O0OH
(1113H) : F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, and the contents of the Byte
Counter will be 0004H. Since BC # 0, the P/V flag is still set. This means that it

did not search through the whole block before the instruction stopped. Since a
match was found, the Z flag is set.

The following program uses the CPIR instruction to count the number of nulls
(00H) found in an 80-byte buffer. The count is kept in register E.

STRT LD BC, 80
LD HL, BUFF
LD A0
LD E,0
LOOP CPIR
JR NZ, FOO
INC E
FOO P PE, LOOP
END
CPD ComPare & Decrement

Operation: A — (HL), HLO HL—-1,BC (:l BC-1

Format:

Mnemonic: CPD Operands:

178

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:
A R R R B
1 1 1 0 1 1 0 1 ED
R S N N R
N A E B R
1 0 1. 0 1 0O O 1 A9
R S N N R S
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the Z
condition bit is set. The HL. and the Byte Counter (register pair BC) are
decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz ET.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the
Accumulator contains 3BH, and the Byte Counter contains 0001H, then after the
execution of

CPD

the Byte Counter will contain @000H, the HL register pair will contain 1110H,
the Z flag in the F register will be set and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
1111H.

Since the CPD instruction decrements HL, it is used to search through memory
from high to low addresses. Otherwise it is similar to the CPI instruction.

CPD R ComPare Decrement & Repeat
Operation: A — (HL), HLHL -1, BC¢BC -1
Format:

Mnemonic: CPDR Operands:

179

MODEL Ill/4 ALDS

Object Code:
R I E S R
11 1 0 1 1 0 1 ED
Lo
N S R R I R
1;0111111101011 B9
Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare,

the Z condition bit is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to zero or if A=(HL), the
instruction is terminated. If BC is not zero and A # (HL), the program counter is
decremented by 2 and the instruction is repeated. Note that if BC is set to zero
prior to instruction execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.

For BC#0 and A + (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4MHzET.:5.25
For BC = 0 or A = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4MHzET.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL), reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set

C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte
Counter contains 0003H, and memory locations have these contents:

(1118H) : 52H
(1117H) : 00H
(1116H) : F3H

then after the execution of
CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter
will be 0000H, the P/V flag in the F register will be reset, and the Z flag in the
F register will be set.

180

8 BIT ARITHMETIC AND LOGICAL GROUP

8 Bit Arithmetic and Logical Group
ADD Ar

Operation: AGA+T

Format:

Mnemonic: ADD Operands: A, r

Object Code:

]] | | |] I
1 0 0 0 0 r r r
| | 1 | | | |

Description:

The contents of register r are added to the contents of the Accumulator, and the
result is stored in the Accumulator. The symbol r identifies the registers A, B, C,
D, E, H or L assembled as follows in the object code:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101
M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents of register C are
11H, after the execution of

ADD A,C

181

MODEL lll/4 ALDS

the contents of the Accumulator will be 55H. See Appendix K for more details of
condition bits affected.

ADD An

Operation: AJA+n

Format:

Mnemonic: ADD Operands: A, n

Object Code:

T T T T T T
1!110‘0101110 Cé6

Description:

The integer n is added to the contents of the Accumulator and the results are
stored in the Accumulator.

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7, reset otherwise
Example:

If the contents of the Accumulator are 23H, after the execution of
ADD A,33H

the contents of the Accumulator will be 56H.

182

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A,(HL)

Operation: A QA + (HL)

Format:

Mnemonic: ADD Operands: A, (HL)

Object Code:
A I
110|0|0|0|1|110 86

Description:

The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: ~ Reset

C: Set if carry from Bit 7, reset otherwise
Example:

If the contents of the Accumulator are AQH, and the content of the register
pair HL. is 2323H, and memory location 2323H contains byte 08H, after the
execution of

ADD A,(HL)
the Accumulator will contain A8H.

ADD A, (IX +d)

Operation: A A+ (IX+d)

Format:

Mnemonic: ADD Operands: A, (IX+d)

183

MODEL Ill/4 ALDS

Object Code:

I f J l I | f

l'llollllillOil DD

I I I | I I f

Description:

The contents of the Index Register (register pair IX) is added to a two’s
complement displacement d to point to an address in memory. The contents of
this address is then added to the contents of the Accumulator and the result is
stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4MHzET.:4.75

Condition Bits Affected:

S Set if result is negative; reset otherwise
Z Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11H, the Index Register [X contains 1000H, and
if the content of memory location 1005H is 22H, after the execution of

ADD A,IX+5H)
the contents of the Accumulator will be 33H.

ADD A(IY +d)

Operation: AQA + (1Y +d)

Format:

Mnemonic: ADD Operands: A, (IY +4d)

184

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:
[N S
i1 1 1 1 1 1 0 1 FD
I N R B R B
T T T T T 1
1 0 0 0 0 1 1 O 86

| | | | | | |

f [i I I I I

| | | | | | |

Description:

The contents of the Index Register (register pair IY) is added to the displacement
d to point to an address in memory. The contents of this address is then added to
the contents of the Accumulator and the result is stored in the Accumulator.

M cycles: 5 T states: 19(4.4,3,5,3) 4MHzET.. 475

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example:

If the Accumulator contents are 11H, the Index Register pair I'Y contains 1000H,
and if the content of memory location 1005H is 22H, after the execution of

ADD A,(IY +5H)
the contents of the Accumulator will be 33H.

ADC As ADd with Carry

Operation: AJA+s+CY

Format:
Mnemonic: ADC Operands: A, s

The s operand is any of r, n, (HL), (IX +d) or (IY + d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

185

MODEL Ili/4 ALDS

Object Code:
T T T T T 71
ADCA,r I]OIO!OIIIr‘rlr
T T T T T
ADC A, n 1|1|O|011;l;110 CE
I E e
n n n n A n n n
[T N T N
R I B R B R
ADC A, (HL) 1|O|0|0|1|1|1|O 8E
N A B R A B
ADC A, (IX+4d) 111|01111|1|011 DD
T T T T T 1
1 0 06 0 1 1 1 0 8E
Lo
I I N N S
d d d d d d d d
R T S I Y N
R I R R B B
ADCA, (IY +4d) IIIIIIIIIII’OII FD
I I N I N
1 0 0 0 1 1 1 0 8E
SO T N T B
N I R S R B
d d d d d d d d
N T N R T

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
CcC = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag (““C” in the F register) is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

186

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States E.T. in ps
ADCA,r 1 4 1.00
ADCA,n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A, (IX+d) 5 19(4,4,3,5,3) 4.75
ADC A, (Y +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise
Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL. register pair
contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)
the Accumulator will contain 27H.

Example 2:

If the Carry Flag is set, the Accumulator contains 30H, and register C contains
05H, then after the execution of

ADC A, C

the Accumulator will contain 36H.

SUB s SUBtract

Operation: AGA—$S

Format:
Mnemonic: SUB Operands: s

The s operand is any of r, n, (HL), (IX +d) or (IY +d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

187

MODEL lli/4 ALDS

Object Code:
T T T T T 771
SUBr 1]01()'1]0‘1'11"lr
T T T T T
SUB n IIIIOlIIOII]lIO D6
1T T T T T 1
n n n n n n n n
R U R NN NN
T T T T T
SUB (HL) 110|0‘1101111‘0 96
1T T T T T 1
SUB (IX +d) I 0 1 1 1 01 DD
T T T T T 1
1 0 o1 0 1 1 O 96
N I N NN W
1T T T T T 1
d d d d d d d d
N IR R N N T
1T T T T T 1
SUB (IY +d) 1 1 1 1 1 1 0 1 FD
Lo
T 1T T T T 1
1 0 0 1 0 1t 1 0 96
[I T N S
1 1T T 17 1 1
d d d d d d d d
S PR T R SO

r identifies registers A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand is subtracted from the contents of the Accumulator, and the result
is stored in the Accumulator.

188

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States E.T. in pus
SUBTr 1 4 1.00
SUBn 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(4,4,3,5,3) 4.75
SUB (1Y +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise

N: Set

C Set if borrow; reset otherwise

Example:

If the Accumulator contains 29H and register D contains 11H, after the execution
of

SUB D
the Accumulator will contain 18H.

S BC A, S SuBtract with borrow (Carry)
Operation: AJA—s—CY

Format:
Mnemonic: SBC Operands: A, s

The s operand is any of r, n, (HL.), (IX +d) or (IY +d) as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T T T T T 1
SBCA,r 1|01011|1|r1r|r
T T T T T 1
SBCA,n 1 1 0 1 1 1 1 O DE

189

MODEL lli/4 ALDS

SBC A, (HL) 1!010111111!110 9E
| ! i I I f]

SBC A, (IX+d) 111101111111011 DD
I I I I I I I
1 o 0 1 1 1 1 O 9E

SBC A,(IY +d) 1 1 1 1 1 1 0 1 FD

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

Description:

The s operand, along with the Carry Flag (“‘C”’ in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the
Accumulator.

190

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States E.T. in ps
SBCA,r 1 4 1.00
SBC A, n 2 7(4,3) 1.75
SBC A, (HL) 2 7(4,3) 1.75
SBC A, (IX+d) 5 19(4,4,3,5,3) 4.75
SBC A, (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/v: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 3433H, and address 3433H contains 05H, after the execution of

SBC A,(HL)
the Accumulator will contain 10H.

Example 2:

If the Carry Flag is set, the Accumulator contains 21H and register B contains 0,
then after the execution of

SBC A,B
the Accumulator contains 20H.

AND s

Operation: AQA S

Format:
Mnemonic: AND Operands: s

The s operand is any of r, n, (HL), (IX +d) or (IY +d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

191

MODEL lil/4 ALDS

Object Code:
T T T T T T

AND r 1 0 1 0 O r r r
R N S E R R
T T T T T

AND n 1|1|110101111|O E6
A
n n n n n n n n
I W N TR NN A
T T T T T

AND (HL) liolliO{O’lllJO A6
N E R R

AND (IX+d) 1111011111110|1 DD
T T T T T
1;0111010|1|130 A6
T T T T T 71
d d d d d d d d
AR TN SO AR SR N
T T T T T

AND (IY +d) llllllllljli()ll FD
S R A E B R
i 01 0 0 1 1 0 A6
RN DU R E R B
T T T T T T
dldadld|d|dzdad

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L 101

192

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps
ANDr 1 4 1.00
AND n 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX +d) 5 19(4,4,3,5,3) 4.75
AND (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set

P/V: Set if parity even,; reset otherwise
N: Reset
C: Reset
Table of AND Values:

IF Then

A B A (After)

0 0 0

0 1 0

1 0 0

1 1 1
Example:

If the B register contains 7BH (01111011) and the Accumulator contains C3H
(11000011), after the execution of

AND B
the Accumulator will contain 43H (01000011).

OR s

Operation: AQA < S

Format:

Mnemonic: OR Operands: s

193

MODEL lii/4 ALDS

The s operand is any of r, n, (HL), (IX +d), or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T T T T T 1

ORT~ 1 0 1.1 0 r r r
A R NN NN O B
T T T

ORn 111|1x1|0|11110 Fé6
T T T T
n n B n n n n n
A MR SR W N B
T T 1T T T 1

OR (HL) 1|0|1|1:011|110 B6
T T T T T 1

OR (IX+d) 111|0;111i1;0|1 DD
T T 1T T T 1
1 0 11 0 1 1 O B6
[O W NN NN S
T T T T T
d d d d d d d d
[R R TR R B
T T T T T 71

OR (IY +d) lllllllllllloll FD
T T 1T T T 1
1 0 1t 1 0 1 1 O B6
N TR NN NN B
T T T T T]
d d d d d d d d
A DU N TR T M

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

194

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps

ORT~ 1 4 1.00
ORn 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (Y +d) 5 19(4,4,3,5,3) 4.75
Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Table of OR Values:

IF Then

A B A (After)

0 0 0

0 1 1

1 0 1

1 1 1
Example:

If the H register contains 48H (01001000) and the Accumulator contains
12H (00010010), after the execution of

OR H
the Accumulator will contain SAH (01011010).

XOR s eXclusive OR

Operation: A { ADs

Format:

Mnemonic: XOR Operands: s

195

MODEL lil/4 ALDS

The s operand is any of r, n, (HL), (IX+d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T T T T T 1

XORr 110I1I0‘1|r|r|r
T T T T T

XOR n 1;1511011x1|1|0 EE
T T T]
n n n n n n n n
SR N WU N DO
T T T T T

XOR (HL) I!O!IlOiIIIEIIO AE
T T T T

XOR (IX+d) 1;1|0|1|111|0|1 DD
T T T T T 1
1!0I1!OI1lllliO AE
| | I] I [|
d d d d d4d d d d
AR IO N N N
T T T T 1 771

XOR (IY +d) 1|1|1|111|110|1 FD
T T T T T
i1 0o 1 0o 1 1 1 O AE
R WO RS W R N
T T T T T
dsdxdldldndldxd

r identifies registers A, B, C, D, E, H or L assembled as follows in the object
code field above:

Register r

A 111
000
001
010
011
100
101

T | N B O T

-fonmonw

196

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the result
is stored in the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in ps
XOR r 1 4 1.00
XOR n 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX +d) 5 19(4,4,3,5,3) 4.75
XOR (1Y +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result i1s zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset
Table of XOR Values:
IF Then

A B A (After)

0 0 0

0 1 1

1 0 1

1 1 0

Note: in Table above that any two like numbers will result in zero.

Example 1:

If the Accumulator contains 96H (10010110), after the execution of
XOR SDH (Note: SDH=01011101)
the Accumulator will contain CBH (11001011).

Example 2:

The instruction
XOR A
will zero the Accumulator.

197

MODEL lii/4 ALDS

CPs ComPare

Operation: A —S

Format:
Mnemonic: CP Operands: s

The s operand is any of r, n, (HL), (IX +d) or (IY +d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:
T T T I ! ! 1

CPr 1 0 1 1 1 r r r
[| | | I |
] | 1 I T ! !

CPn llllllllllllllo FE
T T I T 71
n n n n n n n n
! ! | | | x |
! | I] T —

CP (HL) 1101111111111|O BE
T T 1 T

CP (IX+d) I;I’OillllliOll DD
T T T 7 I I
1 0 1 1 1 1 1 O BE
] | | | | ! |
I T | — | T |
d d d d d d d d
! | | ! ! | 1
T | T ! | I

CP (IY +d) 1|1i1111111!0!1 FD
T 1 l A T
1 0 1.1 1 1 1 O BE
| ! | | | | !
| T | | T 7
d1d|d|dsd|d|d|d

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

198

8 BIT ARITHMETIC AND LOGICAL GROUP

Register r
A = 111
B = 000
cC = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of the s operand are compared with the contents of the
Accumulator. If there is a true compare, a flag is set.

M 4 MHz
Instruction Cycles T States E.T. in ps
CPr 1 4 1.00
CPn 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 4.75
CP (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow in Bit 7; reset otherwise

Example 1:

If the Accumulator contains 63H, the HL register pair contains 6000H and
memory location 6000H contains 60H, the instruction

CP (HL)

will result in all the flags being reset except N.

Example: 2

If the Accumulator contains 65H and register C also contains 65H, then after the
execution of

Cp C

the Z flag will be set.

See Appendix E for more details of condition codes affected.

199

MODEL lil/4 ALDS

INCr INCrement

Operation: I {17+ 1

Format:

Mnemonic: INC Operands: r

Object Code:

Description:

Register r is incremented. r identifies any of the registers A, B, C, D,E, Hor L,
assembled as follows in the object code.

Register r
A = 111
B = 000
c = 001
b = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if r was 7FH before operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of register D are 28H, after the execution of
INC D
the contents of register D will be 29H.

200

8 BIT ARITHMETIC AND LOGICAL GROUP

INC (HL) INCrement

Operation: (HL) ¢ (HL) -+ 1

Format:

Mnemonic: INC Operands: (HL)

Object Code:

0o 06 1 1 0 1 0 O 34

Description:

The byte contained in the address specified by the contents of the HL. register
pair is incremented.

M cycles: 3 T states: 11(4,4,3) 4MHzET.:2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (HL) was 7FH before operation; reset otherwise
N: Reset

C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the contents of address
3434H are 82H, after the execution of

INC (HL)
memory location 3434H will contain 83H.

INC (X + d) INCrement

Operation: (IX+d) G (IX+d) +1

Format:

Mnemonic: INC Operands: (IX +d)

201

MODEL lil/4 ALDS

Object Code:
T T T T T 1
1 1 0 1 1 1 0 1 DD
| | 1 | | | |
T T T T T 1
0 0 1.1 01 0 O 34

Description:

The contents of the Index Register IX (register pair IX) are added to a two’s
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:575

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IX +d) was 7FH before operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and the memory location
2030H contains byte 34H, after the execution of

INC (IX+10H)
the contents of memory location 2030H will be 35H.

|NC (lY + d) INCrement

Operation: (IY +d) ¢ (Y +d) +1

Format:

Mnemonic: INC Operands: (IY +d)

202

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:
T T T
1 1 1 1 1 1 0 1 FD
L]
T T T T T
0O 0o 1.1 0 1 0 O 34

| | | | | | i

[I I I ! | I

| | | |] l I

Description:

The contents of the Index Register I'Y (register pair I'Y) are added to a two’s
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z. Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IY + d) was 7FH before operation; reset otherwise
N: Reset

C: Not Affected

Example:

If the contents of the Index Register pair I'Y are 2020H, and the memory location
2030H contain byte 34H, after the execution of

INC (IY + 10H)
the contents of memory location 2030H will be 35H.

DECm DECrement

Operation: M{m — 1

Format:
Mnemonic: DEC Operands: m

The m operand is any of r, (HL), (IX +d) or (IY + d), as defined for the
analogous INC instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

203

MODEL ll/4 ALDS

Object Code:
T T T T T 1

DEC r OIOlrlrlr‘IIOIl
T T T 1T T

DEC (HL) 010;1|1|O|1|O|1 35
T T T T 71

DEC (IX +d) 1{1!0I111|1|0!1 DD
T T T T
0 0 1 1 0 1 0 1 35
SN TR WA NN S S
1 T T 1T T 1
d d d d d d d d
Lo
T T T 1T T 1

DEC (IY +d) ltllllllllllOll FD
T T T T T71
0 0 1.1 0 1 0 1 35
U WY U SR A
[L R R R
d d d d d d d d
Y NN WO N T T

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

Register r
A = 111
B = 000
c = 001
D = 010
E = 011
H = 100
L = 101

Description:

The byte specified by the m operand is decremented.

204

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States E.T. in ps
DECr 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX +d) 6 23(4,4,3,5,4,3) 5.75
DEC (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4, reset otherwise

P/V: Set if m was 80H before operation; reset otherwise
N: Set

C: Not affected

Example:

If the D register contains byte 2AH, after the execution of
DEC D
register D will contain 29H.

205

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

General Purpose Arithmetic and
CPU Control Groups

DAA

Operation: Decimal-Adjust Accumulator

Format:
Mnemonic: DAA Operands:

Object Code:

o 010 O 1 1 1| 27

Description:

This instruction modifies the results of addition or subtraction so that the results
of binary arithmetic are correct for decimal numbers. The Binary Coded Decimal
(BCD) code uses the 8-bit accumulator as follows: the eight bits are broken up
into two groups of four bits, which represent a two-digit decimal number from 00
to 99. If numbers like this are added with the binary adder in the Z-80, answers
larger than 10 may result in each decimal place. The DAA instruction will
“adjust” the answer so that each decimal place has a value of 9 or less, and so
that the digits have the correct decimal value, though they were added by a binary
circuit. The carry and half-carry flags are used in this conversion, as is a circuit
that detects digits that are 10 or bigger.

HEX HEX
Value in Valuein Number

C Upper H Lower Added C

Before Digit Before Digit to After

Operation DAA (bits 7-4) DAA (bits 3-0) Byte DAA
0 0-9 0 0-9 00 0
0 0-8 0 A-F 06 0
0 0-9 1 0-3 06 0
ADD 0 A-F 0 0-9 60 1
ADC 0 9-F 0 A-F 66 1
INC 0 A-F 1 0-3 66 1
1 0-2 0 0-9 60 1
1 0-2 0 A-F 66 1
1 0-3 1 0-3 66 1
SUB 0 0-9 0 0-9 00 0
SBC 0 0-8 1 6-F FA 0
DEC 1 7-F 0 0-9 A0 1
NEG 1 6-F 1 6-F 9A 1

M cycles: 1 T states: 4 4MHzET.: 1.00

207

i

MODEL [ll/4 ALDS

Condition Bits Affected:

S: Set if most significant bit of Acc. is 1 after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise

H: See instruction

P/V: Set if Acc. is even parity after operation; reset otherwise

N: Not affected

C See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple
decimal arithmetic gives this result:

15
+27

42

But when the binary representations are added in the Accumulator according to
standard binary arithmetic,

0001 0101
+0010 0111

0011 1100=3C

the sum is not decimal. The DAA instruction adjusts this result so that the correct
BCD representation is obtained:

0011 1100
+ 0000 0110(adding 06 from table)

0100 0010=42

CPL ComPLement

Operation: A 0 A

Format:

Mnemonic: CPL Operands:

Object Code:

6 0 1.0 1 1 1 1 2F

208

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

Contents of the Accumulator (register A) are inverted (one’s complement).

M cycles: 1

T states: 4 4 MHzET.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set

P/V: Not affected
N: Set

C Not affected
Example:

If the contents of the Accumulator are 1011 0100, after the execution of
CPL
the Accumulator contents will be 0100 1011.

NEG

Operation: AJO0— A

NEGate

Format:
Mnemonic: NEG Operands:
Object Code:
T T T T T 1
1 11 0 1 1 0 1 ED
I I R NS N
A N R R I B
OIIIOIO(OIIIOIO 44
Description:

Contents of the Accumulator are negated (two’s complement). This is the same as
subtracting the contents of the Accumulator from zero. Note that 80H is left
unchanged.

M cycles: 2 T states: 8(4,4) 4MHzET.:2.00

209

MODEL lll/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if Acc. was 80H before operation; reset otherwise

N: Set

C: Set if Acc. was not O0H before operation; reset otherwise
Example:

If the contents of the Accumulator are
[tfofofJtf1fojofo]

after the execution of
NEG
the Accumulator contents will be

[of1[1fJoft]ojo]o]

CCF Complement Carry Flag

Operation: CcY q CcY

Format:

Mnemonic: CCF Operands:

Object Code:

0 o1 1 1 1 1t 1| 3F

Description:
The C flag in the F register is inverted.
M cycles: 1 T states: 4 4 MHz ET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Previous carry will be copied

P/V: Not affected

N: Reset

C: Set if CY was 0 before operation; reset otherwise

210

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

SCF Set Carry Flag

Operation: CY(j 1

Format:

Mnemonic: SCF Operands:

Object Code:

o 0 1 1 0 1 1 1 37

Description:
The C flag in the F register is set.
M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset

P/V: Not affected
N: Reset

C: Set

NOP No OPeration

Operation:

Format:

Mnemonic: NOP Operands:

Object Code:

T T T T T 1
0101010|0|0|010 00

211

MODEL lli/4 ALDS

Description:
CPU performs no operation during this machine cycle.

M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected: None

HALT

Operation:

Format:

Mnemonic: HALT Operands:

Object Code:

6o 1 1 1 0 1 1 O 76

Description:

The HALT instruction suspends CPU operation until a subsequent interrupt or
reset is received. While in the halt state, the processor will execute NOP’s to
maintain memory refresh logic.

M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected: None

DI Disable Interrupts
Operation: |IFF (0

Format:

Mnemonic: DI Operands:

Object Code:

1 1.1 1 0 0 1 1| F3

212

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFF1 and IFF2). Note that this instruction disables the maskable interrupt during
its execution.

M cycles: 1 T states: 4 4MHzET.: 1.00
Condition Bits Affected: None

Example:

When the CPU executes the instruction
DI

the maskable interrupt is disabled until it is subsequently re-enabled by an EI
instruction. The CPU will not respond to an Interrupt Request (INT) signal.

E| Enable Interrupts

Operation: |FF ¢ 1

Format:

Mnemonic: EI Operands:

Object Code:

1 1 1 1 1 0 1 1| FB

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops (IFF1
and IFF2). Note that this instruction disables the maskable interrupt during its
execution.

M cycles: 1 T states: 4 4MHzET.: 1.60
Condition Bits Affected: None

Example:

When the CPU executes instruction
El

the maskable interrupt is enabled. The CPU will now respond to an Interrupt
Request (INT) signal.

213

MODEL 1il/4 ALDS

IM @ Interrupt Mode 0

Operation:

Format:

Mnemonic: IM Operands: 0

Object Code:

Description:

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting device
can insert any instruction on the data bus and allow the CPU to execute it. The
first byte of a multi-byte instruction is read during interrupt acknowledge cycle.
Subsequent bytes are read in by a normal memory read sequence.

M cycles: 2 T states: 8(4,4) 4MHzET.: 2.00

Condition Bits Affected: None

IM 1 Interrupt Mode 1

Operation:

Format:

Mnemonic: IM Operands: 1

Object Code:
T T T T T 1
1 1t 1 0 1 1 0 1 ED
A N S SO R
T T T T T 1
011|01110[111]0 56

214

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will respond
to an interrupt by executing a restart to location 0038H.

M cycles: 2 T states: 8(4,4) 4MHzET.:2.00

Condition Bits Affected: None

|M 2 Interrupt Mode 2

Operation:

Format:

Mnemonic: IM Operands: 2

Object Code:
T T T T T
1 1 1 0 1 1 0 1 ED
Lo
N I B R R R
0 1t o 1 1 1 1 0 S5E
AR TS T TN N B
Description:

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to
any location in memory. With this mode the CPU forms a 16-bit memory
address. The upper eight bits are the contents of the Interrupt Vector Register I
and the lower eight bits are supplied by the interrupting device.

M cycles: 2 T states: 8(4,4) 4MHzET.:2.00

Condition Bits Affected: None

215

16 BIT ARITHMETIC GROUP

16 Bit Arithmetic Group
ADD HL,ss

Operation: HL { HL 4 ss

Format:

Mnemonic: ADD Operands: HL, ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added to the contents of register pair HL,, and the result is stored in HL.. Operand
ss is specified as follows in the assembled object code.

Register
Pair Ss
BC 00
DE 01
HL 10
Sp 11

M cycles: 3 T states: 11(4,4,3) 4MHzET.: 275

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If register pair HL contains the integer 4242H and register pair DE contains
1111H, after the execution of

ADD HL, DE
the HL register pair will contain 5353H.

217

MODEL 1li/4 ALDS

ADC HL,ss

Operation: HL §HL +ss + CY

ADd with Carry

Format:
Mnemonic: ADC Operands: HL, ss

Object Code:

1 11 0 1 1 0 1 ED

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added with the Carry Flag (C flag in the F register) to the contents of register pair
HL, and the result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair
BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4MHzET.:3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if carry out of Bit 11; reset otherwise
P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the
Carry Flag is set, after the execution of

ADC HL, BC
the contents of HL will be 765AH.

218

16 BIT ARITHMETIC GROUP

SBC HL,ss

SuBtract with Carry

Operation: HL { HL —ss—CY

Format:

Mnemonic: SBC

Operands: HL, ss

Object Code:
T 1T T T T 1
1 1 1 0 1 1 0 1 ED
[T N S B
T T T T T
0O 1 s s O 0 1 O
R S R S T T
Description:

The contents of the register pair ss (any of register pairs BC, DE, HL or SP)

and the Carry Flag (C flag in the F register) are subtracted from the contents of
register pair HL and the result is stored in HL.. Operand ss is specified as follows
in the assembled object code.

Register
Pair SS
BC 00
DE 01
HL 10
SP 11
M cycles: 4 T states: 15(4,4,4,3) 4MHzET..3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair DE
are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE
the contents of HL will be 8887H.

219

MODEL 1ll/4 ALDS

ADD IX,pp

Operation: IX 4 IX+ PP

Format:

Mnemonic: ADD Operands: IX,pp

Object Code:

1 1 0 1 1 1 0 1 DD

Description:

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are
added to the contents of the Index Register IX, and the results are stored in IX.
Operand pp is specified as follows in the assembled object code.

Register
Pair pp
BC 00
DE 01
IX 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz ET.: 375

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected

N: Reset

C. Set if carry from Bit 15; reset otherwise
Example:

If the contents of Index Register IX are 3333H and the contents of register pair
BC are 5555H, after the execution of

ADD IX, BC
the contents of IX will be 8888H.

220

16 BIT ARITHMETIC GROUP

ADD IYrr

Operation: Y 1Y +rr

Format:

Mnemonic: ADD Operands: 1Y, it

Object Code:

Description:

The contents of register pair rr (any of register pairs BC, DE, IY or SP) are
added to the contents of Index Register IY, and the result is stored in I'Y. Operand
it is specified as follows in the assembled object code.

Register
Pair rr
BC 00
DE 01
IY 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4MHzET.: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise
Example:

If the contents of Index Register I'Y are 333H and the contents of register pair BC
are 555H, after the execution of

ADD 1Y, BC
the contents of I'Y will be 888H.

221

MODEL lli/4 ALDS

INC ss INCrement

Operation: SS{SS+ 1

Format:

Mnemonic: INC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
incremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz ET.: 1.50
Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of
INC HL
HL will contain 1001H.

|NC |X INCrement

Operation: IX {1X+ 1

Format:

Mnemonic: INC Operands: X

222

16 BIT ARITHMETIC GROUP

Object Code:
T T T 77T
1 1 0 1 1 1 0 1 DD
I R R TR N
T T T T T
0 01 0 0 0 1 1 23
I Y T TN SO
Description:

The contents of the Index Register IX are incremented.
M cycles: 2 T states: 10(4,6) 4MHzET.:2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H after the execution of

INC IX
the contents of Index Register IX will be 3301H.

INC IY

Operation: 1Y (1Y + 1

Format:
Mnemonic: INC Operands: 1Y

Object Code:
T T T T T
1 1.1 1 1 1 0 1 FD
[N Y T R N
N R I R R B
0 01 0 0 O 1 1 23
I S T N S
Description:

The contents of the Index Register I'Y are incremented.
M cycles: 2 T states: 10(4,6) 4MHz E.T.: 2.50

Condition Bits Affected: None

INCrement

223

MODEL lil/4 ALDS

Exampile:

If the contents of the Index Register are 2977H, after the execution of
INC 1Y
the contents of Index Register I'Y will be 2978H.

DEC ss DECrement

Operation: SS 1SS — 1

Format:

Mnemonic: DEC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are
decremented. Operand ss is specified as follows in the assembled object code.

Register
Pair SS
BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz ET.: 1.50
Condition Bits Affected: None

Example:

If register pair HL. contains 1001H, after the execution of
DEC HL
the contents of HL. will be 1000H.

224

16 BIT ARITHMETIC GROUP

DEC lX DECrement

Operation: IX (01X —1

Format:

Mnemonic: DEC Operands: 1X

Object Code:
T T T T
1 1 0 1 1 1 0 1 DD
S N SR N B I
T T T T T
60 01 0 1 0 1 1 2B
[R T B B B
Description:

The contents of Index Register IX are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz ET.: 2.50
Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after the execution of
DEC IX
the contents of Index Register IX will be 2005H.

DEC EY DECrement

Operation: 1Y Q1Y —1

Format:

Mnemonic: DEC Operands: 1Y

Object Code:
N R R R B
1 1 1 1 1 1 0 1 FD
SRS SO EE N TR M
T T T T T
010113011|O|111 2B

225

MODEL lli/4 ALDS

Description:
The contents of the Index Register I'Y are decremented.
M cycles: 2 T states: 10(4,6) 4 MHzET.:2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register I'Y are 7649H, after the execution of
DEC IY
the contents of Index Register IY will be 7648H.

226

ROTATE AND SHIFT GROUP

Rotate and Shift Group

RLCA _ Rotate Left Circular Accumulator
Operation: ICY] Oﬂ 740 l
A

Format:

Mnemonic: RLCA Operands:

Object Code:

T T T T T 1
O!()lOIO’Oll'Iil o7

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit @
is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. (Bit 0 is the least significant bit.)

M cycles: 1 T states: 4 4MHzET.: 1.00
Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.
Example:

If the contents of the Accumulator are

76 5 4 3 2 1 0
L1jofofJofijofo]o]

after the execution of
RLCA
the contents of the Carry Flag and the Accumulator will be

C 7 6 5 4 3 2 1 0
[1)[ofofofrjofJofo]1]

227

MODEL lil/4 ALDS

RL.A Rotate Left Accumulator
Operation:[-’ CY|&{ 740](j——l
A

Format:

Mnemonic: RLA Operands:

Object Code:

0O 0 01 0 1 1 1} 17

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern
is continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and the previous content of the Carry Flag is copied
into bit 0. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHzET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Acc.
Example:

If the contents of the Carry Flag and the Accumulator are
C 7 6 5 4 3 2 1 0

[ijfojijrfjifojif1]o]

after the execution of
RLA
the contents of the Carry Flag and the Accumulator will be

¢c 7 6 5 4 3 2 1 0

[oJfufrfrfofujrfoli]

228

ROTATE AND SHIFT GROUP

RRCA Rotate Right Circular Accumulator
Operation:E;] 700 a{>|CY|

A
Format:

Mnemonic: RRCA Operands:

Object Code:

N R ER I N
Olololollllllll OF

Description:

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
bit 7 and also into the Carry Flag (C flag in register F) Bit 0 is the least
significant bit.

M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit @ of Acc.
Example:

If the contents of the Accumulator are
7 6 5 4 3 2 1 0

[0fofoJtfofoJo]1]

After the execution of
RRCA
the contents of the Accumulator and the Carry Flag will be

76 543 2 10 C
[1]ojofJojiJoJojof[1]

229

MODEL lil/4 ALDS

RRA Rotate Right Accumulator
Operation:lo | 700 [|CY }-—I
A

Format:

Mnemonic: RRA Operands:

Object Code:

[E E B B B
OIOEO!III‘I'I[I 1F

Description:

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit @ is copied into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag
is copied into bit 7. Bit @ is the least significant bit.

M cycles: 1 T states: 4 4MHzET.: 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 0 of Acc.
Example:

If the contents of the Accumulator and the Carry Flag are

76 5 4 3 2 1 0 C
[1]i]i]ofofofof1][oO]

after the execution of
RRA
the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C
[of1]1r]ofofofof[1]

230

ROTATE AND SHIFT GROUP

RLCr Rotate Left Circular

Operation: | CY | (:]-['—; &40 | ;;l
r

Format:

Mnemonic: RLC Operands: r

Object Code:

Description:

The eight-bit contents of register r are rotated left: the content of bit @ is copied
into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit @. Operand r is specified as follows in
the assembled object code:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Note: Bit 0 is the least significant bit.
M cycles: 2 T states: 8(4,4) 4 MHzET.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

231

MODEL lil/4 ALDS

Example:
If the contents of register r are

7 6 5 4 3 2 1 O

[1]ofofof1]o]o]o]

after the execution of
RLC r
the contents of the Carry Flag and register r will be

¢ 7 6 5 4 3 2 1 0

[1][o]JoJoJ1foJoJo]1]

RLC (H L) Rotate Left Circular

Operation: | CY | ¢ 740 |
(HL)

Format:

Mnemonic: RLC Operands: (HL)

Object Code:

1 1.0 0 1 0 1 1] CB

f
OIO!O‘OROtl 1 0 06

Description:

The contents of the memory address specified by the contents of register pair
HL are rotated left: the content of bit 0 is copied into bit 1; the previous content
of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register F) and also into
bit @. Bit 0 is the least significant bit.

M cycles: 4 T states: 15(4,4,4,3) 4MHzET.:3.75

232

ROTATE AND SHIFT GROUP

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the HL register pair are 2828H, and the contents of memory
location 2828H are

7 6 5 4 3 2 1 0
[1lofofof1]ofo]o]

after the execution of
RLC (HL)
the contents of the Carry Flag and memory locations 2828H will be

C 7 6 5 4 3 2 10
[1][ofofoJi]ofojoft]

RLC (EX + d) Rotate Left Circular

IX+d

Operation: [CY [(:]-[l(—7 ¢0)[;:)_—l

Format:
Mnemonic: RL.C Operands: (IX +d)

Object Code:
1 T T T 1771
1 1 0 1 1 1 0 1 DD
[N T O Y A B
T T T T T 1
1 1 0 0 1 0 1 1 CB

233

MODEL I1l/4 ALDS

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IX and a two’s complement displacement integer d, are rotated
left: the contents of bit @ is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout the byte. The content of bit
7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 is
the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

[1[ofofof1i]ojJo]o]

after the execution of
RLC (IX+2H)
the contents of the Carry Flag and memory location 1002H will be

¢c 7 6 5 4 3 2 1 O

[1][ofofofifofoJofu1]

RLC (EY + d) Rotate Left Circular

Operation: l CcY] 740 l
(Y +d)

Format:

Mnemonic: RLC Operands: (IY +d)

234

ROTATE AND SHIFT GROUP

Object Code:
T T T T T]
1 1 1 1 1 1 0 1 FD
I R R TR N B
T T T T]
i1 1.0 0 1 0 1 1 CB

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register 'Y and a two’s complement displacement integer d are rotated left:
the content of bit 0 is copied into bit 1; the previous content of bit 1 is copied into
bit 2; this process is continued throughout the byte. The content of bit 7 is copied
into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 is the least
significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register
Example:

If the contents of the Index Register I'Y are 1600H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

[1]ofoJoJiJoJo]o]

235

MODEL lil/4 ALDS

after the execution of
RLC (IY+2H)
the contents of the Carry Flag and memory location 1002H will be

C 76 5 43 2 10
[1]fofoJofJtfofJoJof1]

RLm Rotate Left
0peration:l~{ CcY | (H 7 (}0 | G-J
m

Format:

Mnemonic: RL Operands: m

The m operand is any of r, (HL), (IX +d) or (IY +d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
NS R A B R B

RLr III!OIOIIIOiIII CB
T T T T T 1
0 0 0 1 0 r 1
R I N N W
T T T 1 T 1

RL (HL) 1|1|0|0|11011|1 CB
T T T 1 T 1
6 0 0 1.0 1 1 O 16
R I O S N
T T T T T 1

RL (IX+d) 1|1|0|11111|011 DD
T T T T T 1
1 1.0 0 1 0 1 1 CB
R A I R N
T T T T T 1
d d d d d d d d
Lo
1T T T T T 1
6 0 01 0 1 1 O 16
Y I M N I W

236

ROTATE AND SHIFT GROUP

RL (1Y +d) 1 11 1 1 1 0 1 FD

I I ! I I i]

01010|1|0|111|0 16

r identifies register B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111
Description:

The contents of the m operand are rotated left: the content of bit 0 is copied into
bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued
throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 0. Bit 0 is
the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in ps
RLr 2 8(4,4) 2.00
RL (HL) 4 15(4,4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/v: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

237

MODEL lil/4 ALDS

Example:
If the contents of the Carry Flag and register D are
C 7 6 5 4 3 2 1 0

(oJ[1jofofofrjtjij1]

after the execution of
RL D
the contents of the Carry Flag and register D will be

c 7 6 5 4 3 2 1 0

[1][ofofofifuiJr]rfo]

RRC m Rotate Right Circular

Operation:gl 74% 0 J{} |CY|

Format:

Mnemonic: RRC Operands: m

The m operand is any of r, (HL), (IX +d) or (1Y +d), as defined for the
analogous RL.C instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

T ! ! |] 1

RRCr 1!1'0101110|1|1 CB
| T 1 T I |
O 00 0 1 r r 1
| | | I | | |
T | I | | |

RRC (HL) 1|1|010|1|0|111 CB
I I [I
0|0|0|0|1|lx1;0 0E

238

ROTATE AND SHIFT GROUP

RRC (IX+d) 1

RRC (IY +d) 1

I

]

0I0[0|0l1

DD

CB

OE

FD

0E

r identifies register B, C, D, E, H, L or A specified as follows in the assembled

object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111
Description:

The contents of operand m are rotated right: the content of bit 7 is copied into bit
6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
the F register) and also into bit 7. Bit @ is the least significant bit.

239

MODEL lil/4 ALDS

M 4 MHz
Instruction Cycles T States E.T. in ps
RRC r 2 8(4,4) 2.00
RRC (HL) 4 15(4,4,4,3) 3.75
RRC (IX+d) 6 23(4,4,3,5,4,3) 5.75
RRC (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S Set if result is negative; reset otherwise
Z Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C Data from Bit 0 of source register

Example:
If the contents of register A are

76 5 4 3 2 1 0O

[0]of1[1]ofoJo]r1]

after the execution of
RRC A
the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

[1fofofrftJoJofo][1]

RRm Rotate Right
Operation:[D | 700 B [CY M
m

Format:

Mnemonic: RR Operands: m

The m operand is any of r, (HL), (IX +d) or (IY +d), as defined for the
analogous RL.C instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

240

ROTATE AND SHIFT GROUP

Object Code:
T T T T

RRr 1|1|O|O!110|111 CB
/R I N R
0O 0 0 1t 1 r r 1
T NN DR M M N
[I R R

RR (HL) 1t1|010|1|011|1 CB
T T 1 T T 1
0 0 0 1t 1 1 1 O 1E
A N NN NN N
T T T T 1T 1

RR (IX+d) 1f1|0|111|1|011 DD
T T T T
I 1.0 0 1 0 1 1 CB
U DR R R R R
T T T T T 71
d d d d d d d d
Y AU NN TN A B
T T 1T T 1T 1
0O 0 0 1 1 1 1 O 1E
I N NN NN N B
T T T T T

RR (Y +d) 1l1|111'1l11011 FD
S A
1 1 0 0 1 0 1 1 CB
A N NN N A N
T T T T 1T 1
d d d d d d 4 d
RN Y W IR N B
T T T T T
010|O|1|1|1|1|0 1E

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r

000
001
010
011
100
101
111

SPOIHoOw

241

MODEL lil/4 ALDS

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 7. Bit 0 is
the least significant bit.

M 4 MHz
Instruction Cycles T States E.T in ps
RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75
RR (IY +4d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit @ of source register
Example:

If the contents of the HL register pair are 4343H, and the contents of memory
location 4343H and the Carry Flag are

76 5 4 3 2 1 0 C
[1]rfoftfsfrfof1f[o]

after the execution of

RR (HL)

the contents of location'4343H and the Carry Flag will be
7 6 5 4 3 2 1 0 C

[ofrJtfofuifijrfoff1]

SLAm Shift Left Arithmetic
Operation: | CY | ¢{ 740 | ¢O
m

Format:

Mnemonic: SLA Operands: m

242

ROTATE AND SHIFT GROUP

The m operand is any of r, (HL), (IX +d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
T T T T T 1

SLAT 131|O|O|1|0|111 CB
T T T T T 1
0 0 1 0 0 r r
b L]
T T T T T]

SLA (HL) IIIIOIOIIIOIIII CB
T T T T T
0 0o 1 0 0 1 1 O 26
R T RN T T B
T T T T T 1

SLA (IX+d) 1I1!0|1'1|110I1 DD
N R ER R B B
1:110|011|O|111 CB
T T T T T 1
d d d d d d d d
[T O T T B
N R E E N R
o'0|1|010I1i1|o 26
1T T T T T 1

SLA (Y +4d) 111|11111]1|011 FD
1 T T 1 T 1
1 10 0 1 0 1 1 CB
RN T R DR R N
T T T T T
d d d d d d d d
I T T T N B
T T T T T 1
0:0|1|0|O|111|O 26

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code field above:

243

MODEL lil/4 ALDS

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

An arithmetic shift left is performed on the contents of operand m: bit @ is reset,
the previous content of bit @ is copied into bit 1, the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout; the content of bit 7 is
copied into the Carry Flag (C flag in register F). Bit @ is the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in ps
SLAT 2 8(4,4) 2.00
SLA (HL) 4 15(4,4,4,3) 3.75
SLA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SLA (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit 7

Example:

If the contents of register L are

7 6 5 4 3 2 1 0
[1{oft]1fofofof1]

after the execution of
SLA L
the contents of the Carry Flag and register L will be

C 76 5 432 10
[1][of1[1]ofofof1[0]

244

ROTATE AND SHIFT GROUP

SRA m Shift Right Arithmetic

Operation: lj 700) [CY|
m

Format:

Mnemonic: SRA Operands: m

The m operand is any of r, (HL), (IX +d) or (IY +d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
T T T T T 1
SRAT IIIIOIOIIIO‘III CB
T T T T T
0 06 1 0 1 r r
I R T NN NN N
T T T T
SRA (HL) 1{110‘0]11()]1'1 CB
T T T T T 1
0 0 1. 01 1 1 0 2E
L
T T T T T 1
SRA (IX +d) 1 1. 0 1.1 1 O 1 DD

245

MODEL lil/4 ALDS

SRA (Y +d) 1 11 1 1 1 0 1 FD

1 1.0 0 1 O 1 1| CB

6 01 0 1 1 1 O 2E

r means register B, C, D, E, H, L or A specified as follows in the assembled
object code field above:

Register r

000
001
010
011
100
161
111

FPUOImOOW

An arithmetic shift right is performed on the contents of operand m: the content
of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the byte. The content of bit @ is copied into the
Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.
Bit 0 is the least significant bit.

M 4 MHz
Instruction Cycles T States ET.in ps
SRAT 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX +d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit 0 of source register

246

ROTATE AND SHIFT GROUP

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1003H are

7 6 5 4 3 2 1 0

[1JoJififtjofofo]

after the execution of
SRA (IX+3H)
the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

Liftjofififrjojojf[o]

SRL m Shift Right Logical

Operation: 09| 700 [|CY|
m

Format:
Mnemonic: SRL Operands: m

The operand m is any of r, (HL), (IX +d) or (IY +d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:
T T T T

SRLr 111IOIO'1|011'1 CB
T T T T 1T 1
o o0 1 1 1 r r r
A NN DR N T N
T T T T T

SRL (HL) 1|1101011|O|1|1 CB
T T T T T 1
OIO|1|1’11111|0 3E

247

MODEL /4 ALDS

SRL (IX+d) 1 1. 0 1 1 1 0O 1 DD

6 0 1 1 1 1 1 0 3E
Lt
I A R R B

SRL (IY +d) 11111|1|111:011 FD
N R N ER E B
1 1 0 0 1 0 1 1 CB

0 0 1 1 1 1 1 O 3E

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled
object code fields above:

Register r

B 000
C 001
D 010
E 011
H 100
L 161
A 111
Description:

The contents of operand m are shifted right: the content of bit 7 is copied into bit
6; the content of bit 6 is copied into bit 5; this pattern is continued throughout the
byte. The content of bit 0 is copied into the Carry Flag, and bit 7 is reset. Bit 0 is
the least significant bit.

248

ROTATE AND SHIFT GROUP

M 4 MHz
Instruction Cycles T States E.T. in ps
SRL r 2 8(4,4,) 2.00
SRL (HL) 4 15(4,4,4,3) 3.75
SRL (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRL (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit @ of source register
Example:

If the contents of register B are

7 6 5 4 3 2 1 0

[1fofoJoJufu]if1]

after the execution of
SRL B
the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

[oJ1fofJoJoJuJujuj[1]

Rotate Left Decimal

RLD
4

Operation: A|7 4/3 0| |7 4[3 0] (HL)

Format: ﬁ} {]}

Mnemonic: RLD Operands:

249

MODEL Ilil/4 ALDS

Object Code:
T T T T T 1
1!1|11011I1|011 ED
T T T T T
o 1t 1 0 1 1 1 1 6F
RS TSR RN SR T B
Description:

The contents of the low order four bits (bits 3, 2, 1 and @) of the memory
location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same
memory location; the previous contents of those high order four bits are copied
into the low order four bits of the Accumulator (register A), and the previous
contents of the low order four bits of the Accumulator are copied into the low
order four bits of memory location (HL). The contents of the high order bits of
the Accumulator are unaffected. Note: (HL) means the memory location
specified by the contents of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHzET.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise

Z: Set if Acc. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

loJt1J1J1]1]of]1]0] Accumulator

7 6 5 4 3 2 1 0

[oJol1]1]oJofJo[1] (s000H)

250

ROTATE AND SHIFT GROUP

after the execution of
RLD

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0

10[1]1]1]0[0[1]1] Accumulator

7 6 5 4 3 2 1 0

foJolofi1Ji1JoJ1]o] (5000H)

R R D Rotate Right Decimal
[

Operation: A]7 4]3 OI |7 4|3 0| (HL)

Format: {E————————

Mnemonic: RRD Operands:

Object Code:
N I IR I R R
1 1. 1.0 1 1 0 1 ED
T N T T H
T T T T T 1
0o 1 1 0 0 1 1 1 67
[I R N T B
Description:

The contents of the low order four bits (bits 3, 2, 1 and 0) of memory location
(HL) are copied into the low order four bits of the Accumulator (register A); the
previous contents of the low order four bits of the Accumulator are copied into
the high order four bits (7, 6, 5 and 4) of location (HL); and the previous contents
of the high order four bits of (HL) are copied into the low order four bits of (HL).
The contents of the high order bits of the Accumulator are unaffected. Note:
(HL) means the memory location specified by the contents of the HL register
pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHzET.:4.50

251

MODEL ill/4 ALDS

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise

Z: Set if Acc. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset

C: Not affected

Example:

If the contents of the HL register pair are S000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0
[1]oJoJo]o]1]0o]0]| Accumulator

76 5 4 3 2 1 0
[o]Jo]1]o]Jo]o]Jo]o] (se00H)

after the execution of
RRD
the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0
[1[oJofo]o[0]0O]0O]| Accumulator

7 6 5 4 3 2 1 0
[oJ1]oJo]o]Jo]1]0o] (5000H)

252

BIT SET, RESET AND TEST GROUP

Bit Set, Reset and Test Group
BITb, r BIT test

Operation: Z (] Fb

Format:

Mnemonic: BIT Operands: b, r

Object Code:

] I I I I I I

1 1t 0 0 1 O 1 1| CB
[N R R I N

] I | | | | I

Description:

After the execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the indicated register. Operands b and r
are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4) 4MHzET.:2.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

N: Reset

C: Not affected

253

MODEL lil/4 ALDS

Example:

If bit 2 in register B contains 0, after the execution of
BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0.
(Bit 0 in register B is the least significant bit.)

B'T b,(H L) Blt Test

Operation: Z{ (HL),

Format:

Mnemonic: BIT Operands: b, (HL)

Object Code:

1 1.0 0 1 0 1 1} CB

Description:

This instruction tests bit b in the memory location specified by the contents of
the HL register pair and sets the Z flag accordingly. Operand b is specified as
follows in the assembled object code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 3 T states: 12(4,4,4) 4 MHzET.:3.00

254

BIT SET, RESET AND TEST GROUP

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

H: Reset

C: Not affected

Example:

If the HL register pair contains 444H, and bit 4 in the memory location 444H
contains 1, after the execution of

BIT 4,(HL)

the Z flag in the F register will contain @, and bit 4 in memory location 444H will
still contain 1. (Bit @ in memory location 444H is the least significant bit.)

BIT b,(IX+d) Blt Test

Operation: Z{ (IX+d),

Format:
Mnemonic: BIT Operands: b, (IX+d)

Object Code:
T T T T T
1|1|0|1|1,1|0|1 DD
T T T T
1 1. 0 01 0 1 1 CB

Description:

After the execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents register pair IX (Index Register IX) and the
two’s complement displacement integer d. Operand b is specified as follows in
the assembled object code.

265

MODEL [li/4 ALDS

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz ET.: 5.00
Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(IX+4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit @ in memory location 2004H is the least significant bit.)

BIT b,(IY +d) BIT Test
Operation: Z{ (IY +d),

Format:
Mnemonic: BIT Operands: b, (IY +d)

Object Code:
T T T 1 T 1
1 1t 1 1 1 1 0 1 FD
A R N M R B
T T 1T T T 1
1 1.0 0o 1 0 1 1 CB

256

BIT SET, RESET AND TEST GROUP

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents of register pair I'Y (Index Register I'Y) and
the two’s complement displacement integer d. Operand b is specified as follows
in the assembled object code:

Bit
Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz ET.: 5.00

Condition Bits Affected:

S: Unknown

Z: Set if specified Bit is 0; reset otherwise
H: Set

P/V: Unknown

N: Reset

C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(1Y +4H)

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit @ in memory location 2004H is the least significant bit.)

SET byr

Operation: I, Q1

Format:

Mnemonic: SET Operands: b, r

257

MODEL lil/4 ALDS

Object Code:

Description:

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, L or A) is
set. Operands b and r are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4) 4MHz ET.: 2.00
Condition Bits Affected: None

Example:

After the execution of
SET 4,A
bit 4 in register A will be set. (Bit @ is the least significant bit.)

SET b,(HL)

Operation: (HL), ¢ 1

Format:

Mnemonic: SET Operands: b, (HL)

258

BIT SET, RESET AND TEST GROUP

Object Code:

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of
register pair HL is set. Operand b is specified as follows in the assembled object
code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 4 T states: 15(4,4,4,3) 4 MHzET.:3.75
Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of
SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H
is the least significant bit.)

SET b,(IX+d)

Operation: (IX+d), @1

Format:

Mnemonic: SET Operands: b, IX +d)

259

MODEL /4 ALDS

Object Code:
T T [T 1 1
1 1.0 1 1 1 0 1 DD
A N TN N N B
1T T T T T
1 1.6 0 1 0 1 1 CB

Description:

Bit b (any bit, 7 through @) in the memory location addressed by the sum of the
contents of the IX register pair (Index Register IX) and the two’s complement
integer d is set. Operand b is specified as follows in the assembled object code:

Bit

Tested b
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHzET.:5.75
Condition Bits Affected: None

Example:
If the contents of Index Register are 2000H, after the execution of

SET 0,(IX + 3H)

bit @ in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

260

BIT SET, RESET AND TEST GROUP

SET b,(lY +d)

Operation: (IY +d), ¢ 1

Format:

Mnemonic: SET Operands: b, (IY +d)

Object Code:
T T T T T T
1 1 1 1 1 1 0 1 FD
L0y
T T T T T 1
1 1.0 0 1 0 1 1 CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the I'Y register pair (Index Register IY) and the two’s complement
displacement d is set. Operand b is specified as follows in the assembled object
code:

Bit
Tested b
0 000
1 om
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4MHz ET.:5.75

Condition Bits Affected: None

261

MODEL lli/4 ALDS

Example:

If the contents of Index Register I'Y are 2000H, after the execution of
SET 0,JY+3H)

bit 0 in memory location 2003H will be 1. (Bit @ in memory location 2003H
is the least significant bit.)

RES bm RESet

Operation: S, (0

Format:
Mnemonic: RES Operands: b, m

Operand b is any bit (7 through 0) of the contents of the m operand, (any of r,
(HL), (IX+d) or (IY +4d) as defined for the analogous SET instructions. These
various possible opcode-operand combinations are assembled as follows in the
object code:

Object Code:
T T T T T
RES b, r 1111010|1|0|1|1 CB
T T T T 7T
1 0 b b b r r r
A T N SO N T
T T T 17 T 1
RES b, (HL) 111|O|011|0!1|1 CB
T T T
1 0 b b b 1 1 0
[N NN W AN NN B
T T T T T 1
RES b, (IX+d) 1 1 0 1 1 1 0 1 DD

262

BIT SET, RESET AND TEST GROUP

RES b, (1Y +d) 1]1111111]1'0]1 FD
T T T T T
1 1.0 0 1 0 1 1 CB
AR SRR RN WO U B
N I B B B R
didld'did'dldld
T T T T T 1
1 0 b b b 1 1 0
[N ISR S N S B
Bit
Reset b Register r
0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111
Description:
Bit b in operand m is reset.
M 4 MHz
Instruction Cycles T States E.T. in ps
RESr 4 8(4,4) 2.00
RES (HL) 4 15(4,4,4,3) 3.75
RES (IX +d) 6 23(4,4,3,5,4,3) 5.75
RES (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected: None

Example 1:

After the execution of

RES 6,D (objectcode CB, B2H)
bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.)

Example 2:

If HL. contains 7000H and address 7000H contains FFH, after

RES 0,(HL)

address 7000H will contain FEH.

263

JUMP GROUP

Jump Group

JP nn JumP

Operation: PC {nn

Format:

Mnemonic: JP Operands: nn

Object Code:

Note: The first operand in this assembled object code is the low order byte of a
2-byte address.
Description:

Operand nn is loaded into register pair PC (Program Counter) and points to the
address of the next program instruction to be executed.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50
Condition Bits Affected: None

Example:

JP 50A1H

This instruction will cause the program to jump to the instruction at SOA1H by
loading the number SOA1H into the PC register.

265

MODEL lil/4 ALDS

JP cCc,nn JumP
Operation: IF cc TRUE, PC {nn

Format:

Mnemeonic: JP Operands: cc, nn

Object Code:

| T 1 I | l
1 licclcclchO 1 O

Note: The first n operand in this assembled object code is the low order byte of a
2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as usual,
and the program continues with the next sequential instruction. Condition cc is
programmed as one of eight status bits which correspond to condition bits in the
Flag Register (register F). These eight status bits are defined in the table below,
which also specifies the corresponding cc bit fields in the assembled object code.

Relevant

cc Condition Flag
000 NZ non zero Z (=0)
001 Z zero Z (=1
010 NC non carry C (=0
011 Ccarry C (=1

100 PO parity odd P/V(=0)
101 PE parity even PV(=1)
110 P sign positive S (=0
111 M sign negative S (=1

M cycles: 3 T states: 10(4,3,3) 4 MHz ET.: 2.50

Condition Bits Affected: None

266

JUMP GROUP

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are O3H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from address 1520H the byte 03H.

JRe Jump Relative

Operation: PCPC +e

Format:

Mnemonic: JR Operands: ¢

Object Code:

T T T T T 1
01010;11110|0|0 18

]]]] I I |
e-2 1 e-2 | e-2 | e-2 | e-2 | e-2 | e-2 t e-2

Description:

This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. This jump as measured from the address of the instruction
opcode has a range of — 126 to + 129 bytes. The assembler automatically adjusts
for the twice incremented PC.

M cycles: 3 T states: 12(4,3,5) 4 MHz ET.: 3.00
Condition Bits Affected: None

Example 1:

To jump forward five locations from address 480, the following assembly
language statement is used:
JR $+5

The resulting object code and final PC value is shown below:

267

MODEL lll/4 ALDS

Location Instruction

480 18

481 03

482 —QPC before jump
483 —

484

485 QPC after jump

Note: when using an assembler, $ + 5 used above would normally be replaced by
a label.

Example 2:

This program will skip around the NOP instruction.

START JR, END
NOP
END —

C,e Jump Relative

Operation: If C =0, continue
fC=1,PC4PC+e

Format:

Mnemonic: JR Operands: C, e

Object Code:

6 01 1 1 0 O O 38

I | | | T T
e-2|e—2le~2|e—2|e—2[e~2!e—2le~2

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to a ‘1, the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
arange of — 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a ‘0, the next instruction to be executed is taken from the
location following this instruction.

268

JUMP GROUP

If condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00
If condition is not met:

M cycles: 2 T states: 7(4,3) 4MHzET.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back four locations from 480.
The assembly language statement is:

JR C, $-4
The resulting object code and final PC value is shown below:

Location Instruction

47C QPC after jump

47D —

47—

47F —

480 38

481 FA (two’s complement ~ 6)
482 {PC before jump

JR NC,e Jump Relative

Operation: If C=1, continue
IfC=0,PC3PC+e

Format:

Mnemonic: JR Operands: NC, e

Object Code:
T T T T T 1
0’01111|0|0|0|O 30

[S | T T |
e-2 l e-2 ' e-2 ! e-2 | e-2 ‘ e-2 | e-2 | e-2

Description:

This instruction provides for conditional branching to other segments of a

program depending on the results of a test on the Carry Flag. If the flag is equal
to ‘0, the value of the displacement e is added to the Program Counter (PC) and

269

MODEL ili/4 ALDS

the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
arange of — 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a ‘1, the next instruction to be executed is taken from the
location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz ET.: 3.00
If the condition is not met:

M cycles: 7 T states: 7(4,3) 4MHzET.:1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction.
The assembly language statement is:

JR NC,$
The resulting object code and PC after the jump are shown below:

Location Instruction

480 30 {PC after jump
481 FD (two’s complement — 2)
482 —{PC before jump

Note: this instruction would cause an infinite loop in the program.

JR Z,e Jump Relative

Operation: Z =0, continue
fZ=1,PCOPC+e

Format:

Mnemonic: JR Operands: Z, e

Object Code:

0 60 1. 01 0 0 O 28

7 | [T
e~2|e-2|e-2le—2'e-2[e-2‘e~2|e-2

270

JUMP GROUP

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal to
a ‘1, the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
arange of — 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a ‘0, the next instruction to be executed is taken from
the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4MHz ET.:3.00
If the condition is not met:

M cycles: 2 T states: 7(4,3) 4MHz ET.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward five locations from
address 300. The following assembly language statement is used:

JR Z, $+5

The resulting object code and final PC value is shown below:

Location Instruction

300 28

301 03

302 — QPC before jump
303 —

304 —

305 — QPC after jump

JR NZ,e Jump Relative

Operation: If Z=1, continue
fZ=0,PCgPC+e

Format:

Mnemonic: JR Operands: NZ, e

271

MODEL lil/4 ALDS

Object Code:

T T T T T 1
010111010|01010 20

i I T | I i]
e-2 [e~2 | e-2 1 e-2 | e-2 i e-2 | e-2 1 e-2

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal to
a ‘0, the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
arange of —126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a ‘1, the next instruction to be executed is taken from
the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHzET.:3.00
If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHzET.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back four locations from 480.
The assembly language statement is:

JR NZ, $—-4
The resulting object code and final PC value is shown below:

Location Instruction

47C QPC after jump
471D —

47E —

47F —

480 20

481 FA (two’s complement — 6)
482 —@PC before jump

272

JUMP GROUP

JP (L} Jump
Operation: PCHL

Format:
Mnemonmic: JP Operands: (HL)

Object Code:

1 1.1 0 1 O 0O 1 E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL
register pair. The next instruction is fetched from the location designated by the
new contents of the PC.

M cycles: 1 T states: 4 4MHzET.: 1.00
Condition Bits Affected: None

Example 1:

If the contents of the Program Counter are 1000H and the contents of the HL
register pair are 4800H, after the execution of

JP (HL)

the contents of the Program Counter will be 4800H.

The program will jump to the instruction at address 4800H.

Example 2:

A typical software routine which uses JP (HL) is a jump table lookup program.
Assume that n 16-bit addresses are listed in consecutive bytes of memory starting
at address TBL. Also assume that the Accumulator contains a number from 0 to
n-1 representing the routine to be jumped to.

LD HL, TBL ; HL points to the first byte in the table.
ADD AL A ; double A

LD DE, 0

LD E, A

ADD HL, DE ;if A originally contained 5, then HL. now points to the 5th
address in the table

LD E, (HL)

INC HL

LD D, (HL) ; DE now contains the 5th address of the table
LD HL, DE ; HL now contains the 5th address of the table
JP (HL)

273

MODEL lil/4 ALDS

JP (IX) JumP

Operation: PC ¢ 1X

Format:

Mnemonic: JP Operands: (IX)

Object Code:
=T 1T T T T 1
1 1. 0 1 1 1 O 1 DD
[N W T MO IS N
A I R R B
1 1.1 0 1 0 O 1 E9
Lo
Description:

The Program Counter (register pair PC) is loaded with the contents of the
IX Register Pair (Index Register IX). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the contents of the
IX Register Pair are 4800H, after the execution of

P (IX)
the contents of the Program Counter will be 4800H.

JP (IY) JumP

Operation: PC 1Y

Format:

Mnemonic: JP Operands: (IY)

274

JUMP GROUP

Object Code:
T 1T T T T 1
1 1 1 1 1 1 0 1 FD
AR SR NS T N
[SR EE I BN
1 1 1.0 1 0 O 1 E9
SR AN N N T E
Description:

The Program Counter (register pair PC) is loaded with the contents of the
IY Register Pair (Index Register IY). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the
IY Register Pair are 4800H, after the execution of

JP 1Y)
the contents of the Program Counter will be 4800H.

DJNZ e Decrement Jump Not Zero

Operation:

Format:

Mnemonic: DJNZ Operands: e

Object Code:
T T T T]
010|0|1101010|0 10

] | I] T T |
e~~2|e-2Ie-2|e—2{e~2|e—2le—2le—2

Description:

The instruction is similar to the conditional jump instructions except that a
register value is used to determine branching. The B register is decremented
and if a non zero value remains, the value of the displacement e is added to
the Program Counter (PC). The next instruction is fetched from the location

275

MODEL 1li/4 ALDS

designated by the new contents of the PC. The jump is measured from
the address of the instruction opcode has a range of — 126 to + 129 bytes.
The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction
to be executed is taken from the location following this instruction.

If B+#0:

M cycles: 3 T states: 13(5,3,5) 4MHzET.:3.25
If B=10:

M cycles: 2 T states: 8(5,3) 4 MHzET.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DINZ

instruction. This routine moves a line from an input buffer (INBUF) to an output
buffer (QUTBUF). It moves the bytes until it finds a carriage return, or until it

has moved 80 bytes, whichever occurs first.

LD B, 80 ; Set up counter
LD HL, Inbuf ; Set up pointers
LD DE, Outbuf

LOOP: LD A, (HL) ; Get next byte from

; input buffer

LD (DE), A ; Store in output buffer
CP 0DH ;Isita CR?
JR Z, DONE ; Yes finished
INC HL ; Increment pointers
INC DE
DINZ LOOP ; Loop back if 80

; bytes have not
; been moved
DONE:

276

CALL AND RETURN GROUP

Call and Return Group
CALL nn

Operation: (SP — 1) ¢ PC,,, (SP—2) 4PC,, PCann

Format:

Mnemonic: CALL Operands: nn

Object Code:

Note: The first of the two n operands in the assembled object code above is the
least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of
the external memory stack, the operands nn are loaded into PC to point to the
address in memory where the first opcode of a subroutine is to be fetched. (At
the end of the subroutine, a RETurn instruction can be used to return to the
original program flow by popping the top of the stack back into PC.) The push is
accomplished by first decrementing the current contents of the Stack Pointer
(register pair SP), loading the high-order byte of the PC contents into the
memory address now pointed to by the SP; then decrementing SP again, and
loading the low-order byte of the PC contents into the top of stack. Note:
Because this is a three-byte instruction, the Program Counter will have been
incremented by three before the push is executed.

M cycles: 5 T states: 17(4,3,4,3,3) 4MHzET.:4.25
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1A47H, the contents of the Stack
Pointer are 3002H, and memory locations have the contents:

277

MODEL 1ll/4 ALDS

Location Contents

1A47TH CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction CD3521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H
will be 1AH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Before:
Stack Pointer Address Stack
3002 3002 50
3003 1B
3004 3C

Program Counter
1A47

After CALL 2135H:

Stack Pointer Address Stack
3000 3000 4A
3001 1A
3002 50
3003 1B

Program Counter
2135

CALL cc,nn

Operation: [F cc TRUE: (SP -1)¢ PCy
(SP—-2) ¢ PC,, PCdénn

Fermat:

Mnemonic: CALL Operands: cc, nn

278

CALL AND RETURN GROUP

Object Code:

T ! T 1 T 1 l
lllcclcclccll 0 0

| | | | I | I

Note: The first of the two n operands in the assembled object code above is the
least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the Program
Counter (PC) onto the top of the external memory stack, then loads the operands
nn into PC to point to the address in memory where the first opcode of a
subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction
can be used to return to the original program flow by popping the top of the stack
back into PC.) If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. The stack
push is accomplished by first decrementing the current contents of the Stack
Pointer (SP), loading the high-order byte of the PC contents into the memory
address now pointed to by SP, then decrementing SP again, and loading the low-
order byte of the PC contents into the top of the stack. Note: Because this is a
three-byte instruction, the Program Counter will have been incremented by three
before the push is executed. Condition cc is programmed as one of eight status
bits which corresponds. to condition bits in the Flag Register (register F). Those
eight status bits are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code:

Relevant

cc Condition Flag
000 NZ non zero Z (=0)
001 Z zero Z (=1
010 NC non carry C (=0
011 Ccarry C (=1

100 PO parity odd P/V(=0)
101 PE parity even P/V(=1)
110 P sign positive S (=0
111 M sign negative S (=1

279

MODEL Ilil/4 ALDS

If cc is true:

M cycles: 5 T states: 17(4,3,4,3,3) 4MHzET.:4.25
If cc is false:

M cycles: 3 T states: 10(4,3,3) 4 MHzET.:2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are
1A47H, the contents of the Stack Pointer are 3002H, and memory locations have
the contents:

Location Contents

1A47TH D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H
will be 1AH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

RET RETurn

Operation: PC ¢ (SP), PCL ¢ (SP +1)

Format:

Mnemonic: RET Operands:

Object Code:
T T T T
1|1|0|0|1|0|011 Cc9

Description:

Control is returned to the original program flow by popping the previous
contents of the Program Counter (PC) off the top of the external memory stack,
where they were pustied by the CALL instruction. This is accomplished by first
loading the low-order byte of the PC with the contents of the memory address

280

CALL AND RETURN GROUP

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the
high-order byte of the PC with the contents of the memory address now pointed
to by the SP. (The SP is now incremented a second time.) On the following
machine cycle the CPU will fetch the next program opcode from the location in
memory now pointed to by the PC.

M cycles: 3 T states: 10(4,3,3) 4MHzET.: 2.50
Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 2000H are B5H, and the
contents of memory location 2001H are 18H, then after the execution of

RET
the contents of the Stack Pointer will be 2002H and the contents of the Program

Counter will be 18B5H, pointing to the address of the next program opcode to be
fetched.

Before:
Program Counter Address Stack
3535 2000 B5
2001 18
2002 2E
2003 30
Stack Pointer
2000
After RET:
Program Counter Address Stack
18B5 2002 2E
2003 30
Stack Pointer
2002

RET cc RETurn

operation: IF cc TRUE: PC_ ¢ (SP), PC ¢ (SP+1)

Format:

Mnemonic: RET Operands: cc

281

MODEL lli/4 ALDS

Object Code:

| I | |] i |

1 1 ¢ ¢cc cc O O O
i1 ! | t [

Description:

If condition cc is true, control is returned to the original program flow by
popping the previous contents of the Program Counter (PC) off the top of the
external memory stack, where they were pushed by the CALL instruction. This is
accomplished by first loading the low-order byte of the PC with the contents of
the memory address pointed to by the Stack Pointer (SP), then incrementing the
SP, and loading the high-order byte of the PC with the contents of the memory
address now pointed to by the SP. (The SP is now incremented a second time.)
On the following machine cycle the CPU will fetch the next program opcode
from the location in memory now pointed to by the PC. If condition cc is false,
the PC is simply incremented as usual, and the program continues with the next
sequential instruction. Condition cc is programmed as one of eight status bits
which correspond to condition bits in the Flag Register F). These eight status bits
are defined in the table below, which also specifies the corresponding cc bit fields
in the assembled object code.

Relevant

cc Condition Flag
000 NZ non zero Z (=0
001 Z zero Z (=1
010 NC non carry C (=0
011 Ccamry C (=1)

100 PO parity odd P/V(=0)

101 PE parity even PIV(=1)

110 P sign positive S (=0)

111 M sign negative S (=1

If cc is true:

M cycles: 3 T states: 11(5,3,3) 4 MHz ET.:2.75
If cc is false:

M cycles: 1 T states: 5 4 MHzET.: 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are
3535H, the contents of the Stack Pointer are 2000H, the contents of memory
location 2000H are BSH, and the contents of memory location 2001H are 18H,
then after the execution of

RET M

282

CALL AND RETURN GROUP

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to be
fetched.

RETI

Operation: Return from interrupt

Format:

Mnemenic: RETI Operands:

Object Code:
T T T T T 1
1 1.1 0 1 1 0 1 ED
[N T RS T N B
T T T T T 1
0|110x011|1|0|1 4D
Description:

This instruction is used at the end of an interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET
instruction).

2. To signal an I/O device that the interrupt routine has been completed. The
RETI instruction facilitates the nesting of interrupts, allowing higher priority
devices to suspend service of lower priority service routines.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz ET.: 3.50
Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B, connected in a daisy chain
configuration with A having a higher priority than B.

+ A B
“—IEI IEO [{IEI IEO}—

B generates an interrupt and is acknowledged. (The interrupt enable out, IEQ,
of B goes low, blocking any lower priority devices from interrupting while B is
being serviced). Then A generates an interrupt, suspending service of B. (The

283

MODEL lil/4 ALDS

IEO of A goes ‘low’ indicating that a higher priority device is being serviced.)
The A routine is completed and a RETI is issued resetting the IEO of A,
allowing the B routine to continue. A second RETI is issued on completion of
the B routine and the [EO of B is reset (high), allowing lower priority devices
interrupt access.

ETN

Operation: Return from non maskable interrupt

Format:
Mnemonic: RETN Operands:

Object Code:
T T T T T
11 1 0 1 1 0 1 ED
I T T U Y
T T T T T]
01 0 0 0 1 0 1 45
R S T N N N
Description:

Used at the end of a service routine for a non maskable interrupt, this instruction
executes an unconditional return which functions identically to the RET
instruction. That is, the previously stored contents of the Program Counter (PC)
are popped off the top of the external memory stack; the low-order byte of PC is
loaded with the contents of the memory location pointed to by the Stack Pointer
(SP), SP is incremented, the high-order byte of PC is loaded with the contents of
the memory location now pointed to by SP, and SP is incremented again. Control
is now returned to the original program flow: on the following machine cycle the
CPU will fetch the next opcode from the location in memory now pointed to by
the PC. Also the state of IFF2 is copied back into IFF1 to the state it had prior to
the acceptance of the NMIL.

M cycles: 4 T states: 14(4,4,3,3) 4 MHzET.:3.50
Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program
Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the
CPU will ignore the next instruction and will instead restart to memory address
00Q66H. That is, the current Program Counter contents of 1A45H will be pushed
onto the external stack address of OFFFH and OFFEH, high order byte first, and

284

CALL AND RETURN GROUP

0066H will be loaded onto the Program Counter. That address begins an interrupt
service routine which ends with RETN instruction. Upon the execution of
RETN, the former Program Counter contents are popped off the external
memory stack, low-order first, resulting in a Stack Pointer contents again of
1000H. The program flow continues where it left off with an opcode fetch to
address 1A45H.

RST P ReSTart

Operation: (SP — 1) ¢PC,, (SP— 2)GPC,, PCL @O, PC P

Format:

Mnemonic: RST Operands: P

Object Code:

Description:

The current Program Counter (PC) contents are pushed onto the external memory
stack, and the page zero memory location given by operand p is loaded into the
PC. Program execution then begins with the opcode in the address now pointed
to by PC. The push is performed by first decrementing the contents of the Stack
Pointer (SP), loading the high-order byte of PC into the memory address now
pointed to by SP, decrementing SP again, and loading the low-order byte of PC
into the address now pointed to by SP. The ReSTart instruction allows for a Call
to a subroutine at one of eight addresses as shown in the table below. The
operand p is assembled into the object code using the t column of the table.
Note: Since all addresses are in page zero of memory, the high order byte of PC
is loaded with @OH. The number selected from the “‘p’” column of the table is
loaded into the low-order byte of PC.

At the end of the subroutine a RETurn instruction can be used to return to the
original program by popping the top of the stack back into PC.

P t
00H 000
08H 001
10H 010
18H 011
20H 160
28H 101
30H 110
38H 111

M cycles: 3 T states: 11(5,3,3) 4MHzET.: 2.75

285

MODEL lil/4 ALDS

Example:
If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 11011111)

the PC will contain 0018H, as the address of the next opcode to be fetched, and
the top number on the stack will be 15B3H.

286

INPUT AND OUTPUT GROUP

Input and Output Group

IN A,(n) INput

Operation: A {(N)

Format:

Mnemonic: IN Operands: A, (n)

Object Code:

1 1.0 1 1 O 1t 1| DB

Description:

The number of the input port is n. Data is input to register A. The operand n is
placed on the bottom half (A® through A7) of the address bus to select the I/O
device at one of 256 possible ports. The contents of the Accumulator also appear
on the top half (A8 through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written into the Accumulator
(register A) in the CPU.

M cycles: 3 T states: 11(4,3,4) 4MHz ET.: 275
Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the
peripheral device mapped to I/O port address 01H, then after the execution of

IN A,(01H)

the Accumulator will contain 7BH.

287

MODEL lil/4 ALDS

IN E’,(C) INput

Operation: I' ((C)

Format:

Mnemonic: IN Operands: 1, (C)

Object Cede:

1 1 1.0 1 1 0 1 ED

Description:

Register C contains the number of the input port. Data is input to register r.

The contents of register C are placed on the bottom half (A@ through A7) of the
address bus to select the I/O device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
into register r in the CPU. Register r identifies any of the CPU registers shown in
the following table, which also shows the corresponding three-bit “r”’ field for
each. The flags will be affected, checking the input data.

Register r

000
001
010
011
100
101
111

M cycles: 3 T states: 12(4,4,4) 4MHzET.:3.00

>OTImUnNw

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Not affected

288

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 10H, and the
byte 7BH is available at the peripheral device mapped to I/O port address 07H,
then after the execution of

IN DJ(C)
register D will contain 7BH

A typical use of the IN r, (C) instruction is for polled I/O. The following program
continually polls or inputs data from port FF until a non-zero number appears.
The program then reads in data from port FE. In this application, port FF is used
as a data ready signal for port FE.

LD C, OFFH ; C points at port FF
LOOP IN B, (O) ; input port FF to register B
JR Z, LOOP ; continue polling until not zero
IN A, (OFEH) ; input port FE to register A
[N INput & Increment

Operation: (HL) ¢(C), BB —1, HLOHL +1

Format:

Mnemeomnic: INI Operands:

Object Code:

1 1.1 0 1 1 O 1| ED
I S S SR SR

1 01 0 0 0 1 O A2
[N I N RN N N

Description:

Register C contains the number of the input port. Data input is placed in memory
at the address pointed at by HL. The contents of register C are placed on the
bottom half (A0 through A7) of the address bus to select the I/O device at one of
256 possible ports. Register B may be used as a byte counter, and its contents are
placed on the top half (A8 through A15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and written to the CPU. The
contents of the HL register pair are then placed on the address bus and the input
byte is written into the corresponding location of memory. Finally the byte
counter is decremented and register pair HL. is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHzET.: 4.00

289

MODEL lli/4 ALDS

Condition Bits Affected:

S: Unknown

Z: Set if B — 1 =0, reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are O7H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/O port address @7H, then after the execution of
INI

memory location 1000H will contain 7BH, the HL register pair will contain
1001H, and register B will contain OFH.

The following program will input data from input ports 1 through 80 and place
the data into a buffer in memory.

LD B, 80
LD C,0
LD HL, BUFF
LOOP INC C
INI
Jp NZ, LOOP
INBR INput Increment & Repeat

Operation: (HL) 0 (C), B¢B -1, HLOHL + 1

Format:

Mnemonic: INIR Operands:

Object Code:

1 1.1 0 1t 1 0 1 ED

1 0 1.1 .0 O 1 O B2

290

INPUT AND OUTPUT GROUP

Description:

Register C contains the number of the input port. The data input is placed in
memory at the address pointed at by the HL register pair. The contents of register
C are placed on the bottom half (A0 through A7) of the address bus to select the
I/0 device at one of 256 possible ports. Register B is used as a byte counter, and
its contents are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are placed on the address bus
and the input byte is written into the corresponding location of memory. Then
register pair HL is incremented, the byte counter is decremented. If
decrementing causes B to go to zero, the instruction is terminated. If B is not
zero, the PC is decremented by two and the instruction repeated. Note that if B is
set to zero prior to instruction execution, 256 bytes of data will be input. Also
interrupts will be recognized after each data transfer.

IfB+0:

M cycles: 5 T states: 21(4,5,3,4,5) 4MHzET.:5.25
IfB=0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHzET.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C Not affected
Example:

If the contents of register C are @7H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to I/O port of address 07H:

51H
A9H
03H

then after the execution of
INIR

the HL register pair will contain 1003H, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

1000H 51H
1001H ASH
1002H 03H

291

MODEL lll/4 ALDS

Here is a program to input 80 bytes from I/O port number FF and put them into
an 80-byte buffer starting at address BUFE

LD HL, BUFF ; HL points at first byte of buffer
LD B, 80 ; load byte counter

LD C, OFFH ; port FF

IN IR ; input 80 bytes

Note: this assumes that the input port can be synchronized with the input
instructions.

IND

Operation: (HL) @ (C), BdB—1, HLGHL -1

INput & Decrement

Format:

Mnemonic: IND Operands:

Object Code:
T T T T T
1 1 1 0 1 1 0 1 ED
S S T T Y B
N A A B N B
11011|0l110|1|0 AA
Description:

The contents of register C are placed on the bottom half (A0 through A7) of the
address bus to select the I/0 device at one of 256 possible ports. Register B may
be used as a byte counter, and its contents are placed on the top half (A8 through
A15) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register
pair are placed on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter and register pair HL
are decremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.. 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B — 1 =0; reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

292

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL. register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/O port address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain
OFFFH, and register B will contain OFH.

!N DR INput Decrement & Repeat
Operation: (HL) ¢ (C), B¢B —1, HL gHL —1

Format:

Mnemonic: INDR Operands:

Object Code:
N R R RS R B
1 1. 1.0 1 1 0 1 ED
SRS TR B S N N
T T T T T 1
IIO'III‘I‘O[IIO BA
Description:

The contents of register C are placed on the bottom half (A0 through A7) of the
address bus to select the I/O device at one of 256 possible ports. Register B is
used as a byte counter, and its contents are placed on the top half (A8 through
A15) of the address bus at this time. Then one byte from the selected port

is placed on the data bus and written to the CPU. The contents of the HL.
register pair are placed on the address bus and the input byte is written into

the corresponding location of memory. Then HL and the byte counter

are decremented. If decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of
data will be input. Also interrupts will be recognized after each data transfer.

If B+0:

M cycles: 5 T states: 21(4,5,3,4,5) 4MHzET.:5.25
IfB=0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz ET.:4.00

293

MODEL Ill/4 ALDS

Condition Bits Affected:
S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C: Not affected
Example:

If the contents of register C are @7H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to I/O port address 07H:

51H
A9H
03H

then after the execution of
INDR

the HL register pair will contain QFFDH, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

OFFEH 03H
OFFFH A9H
1000H 51H

OUT (n),A OUTput

Operation: (N) QA

Format:

Mnemonic: OUT Operands: (n), A

Object Code:

I !] I]] I

1 1.0 1 0 O 1 1 D3
[HN NN NN N R N

I] I] I I]

294

INPUT AND OUTPUT GROUP

Description:

The operand n is placed on the bottom half (AQ through A7) of the address

bus to select the I/0 device at one of 256 possible ports. The contents of the
Accurmnulator (register A) also appear on the top half (A8 through A15) of the
address bus at this time. Then the byte contained in the Accumulator is placed on
the data bus and written into the selected peripheral device.

M cycles: 3 T states: 11(4,3,4) 4MHzET.:2.75
Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of
OUT 01H,A

the byte 23H will have been written to the peripheral device mapped to I/O port
address 01H.

OUT (C),r OUTput

Operation: (C) r

Format:

Mnemonic: OUT Operands: (C), r

Object Code:

1 11 0 1 1 0 1 ED

Description:

The contents of register C are placed on the bottom half (AQ through A7) of the
address bus to select the I/O device at dne of 256 possible ports. The contents of
Register B are placed on the top half (A8 through A15) of the address bus at this
time. Then the byte contained in register r is placed on the data bus and written
into the selected peripheral device. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding three-bit *‘r”’
field for each which appears in the assembled object code:

295

MODEL Ill/4 ALDS

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz ET.: 3.00
Condition Bits Affected: None

Example:

If the contents of register C are 01H and the contents of register D are SAH, after
the execution of

ouT (O),b

the byte SAH will have been written to the peripheral device mapped to 1/O port
address 01H.

OUT! OUTput & Increment
Operation: (C) ¢ (HL), B4B—1, HLOHL +1

Format:

Mnemeonic: OUTI Operands:

Object Code:
T T T T 1T 1
llllllollllloll ED
T T T T T 1
110;1|050|011|1 A3
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A through A7) of the address bus
to select the /O device at one of 256 possible ports. Register B may be used as
2 byte counter, and its decremented value is placed on the top half (A8 through

296

INPUT AND OUTPUT GROUP

A15) of the address bus. The byte to be output is placed on the data bus and
written into selected peripheral device. Finally the register pair HL is
incremented.

M cycles: 4 T states: 16(4,5,3,4) 4MHzET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B — 1 =0, reset otherwise
H: Unknown

P/V: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory address
1000H are 59H, then after the execution of

OUTI

register B will contain OFH, the HL register pair will contain 1001H, and the
byte 59H will have been written to the peripheral device mapped to I/O port
address 07H.

QTER OuTput Increment & Repeat
Operation: (C) ¢(HL), B¢B—1, HLOHL +1
Format:

Mnemonic: OTIR Operands:

Object Code:
T T T T T 1
1 1.1 0 1 1 0 1 ED
I T N W T B
T T T T
1 0 1.1 0 0 1 1 B3
R T Y N N B
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A® through A7) of the address bus

297

MODEL [ll/4 ALDS

to select the [/O device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL

is incremented. If the decremented B register is not zero, the Program Counter
(PC) is decremented by two and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 bytes of data. Also, interrupts will be
recognized after each data transfer.

If B+0:

M cycles: 5 T states: 21(4,5,3,4,5) 4MHzET.:5.25
IfB=0:

M cycles: 4 T states: 16(4,5,3,4) 4MHzET.: 4.00

Condition Bits Affected:
S: Unknown

Z: Set

H: Unknown

P/V: Unknown

N: Set

C: Not affected
Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of
OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group
of bytes will have been written to the peripheral device mapped to I/O port
address 07H in the following sequence:

51H
A9H
03H

208

INPUT AND OUTPUT GROUP

OUTD OUTput & Decrement
Operation: (C) { (HL), B 4 B-1, HL GgHL -1

Format:
Mnemonic: OUTD Operands:

Object Code:
T T T 1T T 1
1 11 0 1 1 0 1 ED
SN N T T T T
T T T T T 1
1 01 0 1 0 1 1 AB
R N S M N
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A® through A7) of the address bus to
select the I/0 device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Finally the register pair
HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHzET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set if B — 1 =0; reset otherwise
H: Unknown

P/v: Unknown

N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory location
1000H are 59H, after the execution of

OUTD
register B will contain OFH, the HL register pair will contain OFFFH, and the

byte S9H will have been written to the peripheral device mapped to I/O port
address O7H.

299

MODEL [ll/4 ALDS

OTDR OUTput Decrement & Repeat
Operation: (C) 4| (HL), BéB—1, HLGHL -1

Format:

Mnemonic: OTDR Operands:

Object Code:

T T T T T 71
1 1.1 0 1 1 0 1 ED
[TR T T E E
| E R B R
1 01 1 1 0 1 1 BB
[N N S M R B
Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A® through A7) of the address bus to
select the I/O device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not zero, the Program Counter
(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 byte of data. Also, interrupts will be
recognized after each data transfer.

IfB+0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHzET.:5.25
IfB=0:

M cycles: 4 T states: 16(4,5,3,4) 4MHzET.: 4.00

Condition Bits Affected:

S: Unknown

Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

300

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

OFFEH 51H

OFFFH A9H

1000H 03H

then after the execution of
OTDR

the HL. register pair will contain OQFFDH, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to I/O port
address 07H in the following sequence:

03H
A9H
51H

301

EXTENDED 280 INSTRUCTIONS

Chapter 10
Extended Z.80 Instructions

The ALDS Assembler contains a number of extended Z80 instructions. You can
use them the same way you use other Z80 instructions.

An extended instruction is actually an internally defined macro. When you
assemble the instruction, the Assembler expands it into a group of Z80
instructions. A description of macros is in Chapter 8.

Notations

In addition to the notations described in Chapter 9, this chapter uses:

xx a register pair
yy a register pair
[] optional value

Format Of Each Instruction

This chapter uses the same format for the instructions as Chapter 9, with the
following exceptions:

* many of the instruction formats show different combinations of operands.
These combinations are listed under *‘Operands™

» following the description of each instruction is a breakdown of how the
instruction expands when assembled

* the operation is not shown
» the object code is not shown

CPR oper and ComPare double Register

Mnemonic: CPR Operands: xx (where xx=BC, DE, HL,, or SP)

Description:

Compares the contents of the operand to the contents of HL. If they compare, the
Z bit is set.

303

MODEL Ili/4 ALDS

Example:

If register pair BC contains an AQH and HL contains an AQH.
CPR BC

sets the Z bit.

Expansion: CPR xx

PUSH HL
OR A
SBC HL s xx
POP HL

CMPD operand1,operand2,[length]

CoMPare with Decrement

Mnemeonic: CMPD Operands: nnl,nn2,n length is n.
nnl,nn2 length is contents of BC.
nnl,nn2,(nn3) length is contents of
nn3,
nnl,(nn2) length is last byte of
the string beginning at
operand?.
Description:

Compares the string beginning at operandl and ending at (operandl - length)
with the string beginning at operand?, and ending at (operand?2 - length). The Z
bit is set according to the result of the comparison. Zero length strings are equal.

If a mismatch occurs, HL and DE will contain the addresses preceeding that
mismatch.

Example:

If memory location 4000-4006 contains the stringl “‘develop” and location 5000-
5006 contains the string2 “‘envelop’; the operation

CMPD 4006H »3BBGH »7

starts the comparison of the two strings with the last byte, in this case the ‘p’ A
mismatch occurs at the second letter. Because of this mismatch, the address of
the preceding ‘n’ is now in register HIL. and the address of the preceding ‘e’ in
register DE.

304

EXTENDED Z80 INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPD nnl nn2,n

LD
LD
LD
R LD
OR
JR
LD
CP
JR
LDD
JR

A
Ala

DEninl
HLynnlZ
BC i
A+B

C

2N
Ay (DE)
(HL)

NZ s X

(Y&
AT

Expansion: CMPD nnl,nn2

LD
LD
: LD
OR
JR
LD
cP
JR
LDD
JR

r3

Xl

Expansion: CMPD nnl nn2,(nn3)

LD
LD
LD
LD
LD
LD
OR
JR
LD
CP
JR
LDD
JR

73

P
te
=

DEsnnl
HLsnne
AB

C

X1
Ay (DE)
{HL)
NZ 141

A
AT

DE:snnl
HLsnnd
Alnn3)
CHA
B0
AsB

[

2R
A{(DE)
(HL)
NZ 1%l

e
N

305

MODEL lil/4 ALDS

Expansion: CMPD nnl ,(nn2)
LD DE +ninl

LD HL snns
LD Cy(HL)
LD B.0
INC HL

RZ: LD A.B
OR C
JR 24X
LD A(DE)
CP (HL)
JR NZ X1
LDD
JR HE

Kl

Note: The symbols used in the expansion are shown for clarity and are not
actually defined for use by other statements.

CMPI operand1,operand2,length

CoMPare with Increment

Mnemonic: CMPI Operands: nnl,nn2,n length is specified.
nnl,nn2 length in BC.
nnl,nn2 (nn3) length is contents of nn3.
nnl,(nn2) length is first byte of nn2.
Description:

Compares the string beginning at operandl with the string beginning at
operand?2 for the given length. Depending on the operands, length can be
specified as a constant, the contents of an address, or the contents of the BC
register. If a match does not occur, HL and DE will contain the addresses
following that mismatch. The Z bit is set according to the result of the
comparison. Zero length strings are equal.

Example:

If memory location 4000-4006 contains the string! “‘develop’ and location 5000-
5006 contained the string2 ‘‘envelop’:

CMPI 4B00H +5000H »7

starts the comparison of the two strings beginning with the first byte (in this case,
the ‘d’ in string1 and the ‘¢’ in string2). A mismatch occurs at the first letter. The
address of ‘d’ is now in register DE and the address of ‘e’ is now in register HL
where the comparison failed.

306

EXTENDED Z80 INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPI nnl ,nn2,n

LD DEsnnl
LD HL +nin2

LD BCsn
2 LD A+B

OR C

JR 2R

LD A(DE)

CP (HL?

JR NZ s %

LDI

JR HE

M
1A}

Expansion: CMPI nnl nn2

LD DEsnnl
LD HL snn2
He: LD AsB

OR C

JR 2R
LD A (DE)
ce (HL)
JR NZ o X
LDI

JR X2

i

Expansion: CMPI nnl,nn2,(nn3)

LD DEsynnl
L.D HLsnn?
LD Byinn3)

LD LA

LD B:0
H23 LD AB

0OR C

JR Z X

LD A (DE)

CP (HL)

JR NZ %

LDI

JR K2

307

MODEL lli/4 ALDS

Expansion: CMPI nnl,(nn2)

LD DEsynnl
L.D HlsnnZ
LD L (HL)

LD B0
INC HL

K2 LD AsB
OR G
JR ZaX
L.D Ay (DE)
Cp (HL)
JR NZ 1%
LDI
JR HE

Kl

Neote: The labels used in the expansion are shown for clarity and are not actually
defined for use by other statements.

TZ oper: and Test register for Zero

Mnemonic: TZ Operands: xx (where xx =BC, DE, HL, IX, or 1Y)

Description:

Compares the contents of xx to zero. If true, the Z bit is set.

Example:

If the contents of BC contains a 00H then the operation
TZ BC

sets the Z bit. Any other value (i.e. AQH) sets the NZ bit.

(XTI LTS AT ELETE LTI E LI L L SEL LS L E L LSS RS LRSS ST
Note: TZ IX and TZ IY are instructions which are not documented by
ZILOG. Although they should assemble properly, Radio Shack does not
guarantee that they will work on all processors. You should test them in

your own environment to ensure their validity.
(XX LETT LT LEL T LSS TR LRSS L LSS E RS L SR TS

e e sje S o ok ok o o ol e
¢ o o4 e e 3k o o 3 o o

Expansion: TZ xx

LD Ashidgh order byte of xx
OR low order byte of xx

308

EXTENDED Z80 INSTRUCTIONS

EX oper and EXchange double register
with (SP)

Mnemonic: EX Operands: (SP),xx where xx = AF, BC, or DE

Description:

Exchanges the low order byte contained in xx with the contents of the memory
address specified by the contents of the stack pointer (SP). The high order byte of
xx is exchanged with the next highest memory address (SP+ 1).

Example:

If the contents of the register pair BC is 3978H and the stack pointer (SP) and its
next byte (SP+ 1) contains 2357H:

EX (5P) :BC
causes the register pair BC to contain 2357H and the top address of the stack to
contain 4978H.

Expansion: EX (SP),xx where xx = AF or BC

bt (SP) sHL
PUSH xx
PUSH HL
POP XX
POP HL
X (8P) sHL

Expansion: EX (SP),DE

X DE sHL
EX (6P) sHL
b DE yHL

EX operand1,operand2

EXchange double register

Mnemonic: EX Operands: xx,yy where xx and yy are any register pairs
listed under ‘‘Expansion’” below.

Description:

Exchanges the two-byte contents of xx with the contents of yy.

309

MODEL lli/4 ALDS

Example:

The contents of BC is 6789H and the contents of DE is 1234H. After the

execution of:
EX BC+DE

the values are exchanged so that BC contains 1234H and DE contains 6789H.

Expansion: EX AF,BC
EX AF,DE
EX BC,DE

PUSH 1st Operand
PUSH 2nd Operand
POP Ist Operand
POP Z2nd Orerand

Expansion: EXxx,yy (xx=AF, BC or DE

yy=IX or 1Y)
PUSH 1st Operand
EX (SP)+2nd Operand

POP ist Operand

Expansion: EX HL ,xx (x=IX or 1Y)
EX IX,IY
EX xx,HL, (xx = AF or BC)

PUSH 1st Operand
EX (SP)+2nd OprPerand
PGP lst Operand

Expansion: EX (SP), xx (xx= AF, BC)

EX (SP),» HL
PUSH 2Znd Operand
PUSH HL

POP Znd QOperand
EX {(8P)y HL

Expansion: EX (SP), DE

EX (8P) s HL
EX DE: HL
EX (S§P) s HL

LD operand1,operand?2

Mnemenic: LD Operands: xx,yy
(xx),yy
xx,(yy)
(xx),(yy)

LoaD

310

EXTENDED Z80 INSTRUCTIONS

Description:

Loads the first operand with the second operand. The numbers shown in the
tables (1-14) represent the coded expansions for the pair of operands. Details of
each expansion follow the tables (i.e. BC,AF refer to expansion description #1).
Example:

The operation:

LD HL. »DE

copies the contents of DE to HL.

First Second Operand
Operand BC DE HL | (BC) | (DE) | (HL) | (IX+DD) | (lY+DD)
(BC) 4 4 6 — 9 9 9 9
(DE) 4 4 7 9 - 9 9 9
(HL) 5 5 8 9 9 9 9 9
(IX+DD) 5 5 5 9 9 9 o 9
(Y +DD) 5 5 5 9 9 9 9 —
First Second Operand
Operand AF BC DE HL IX Y A
AF 1 1 1 1 1 1 —
BC 1 3 3 3 1 1 2
DE 1 3 3 3 1 1 2
HL 1 3 3 3 1 1 2
IX 1 1 1 1 1 1 2
Y 1 1 1 1 1 1 2
First Second Operand
Operand | (BC) | (DE) | (HL) | (IX+DD)|(IY +DD)
BC 11 12 10 10 10
DE 12 11 10 10 10
HL 13 13 14 10 10

(—) indicates operand pairs not applicable

311

MODEL 1li/4 ALDS

(1) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:
AF +AF 5 AFBC 3§ AF.DE § AFHL § AF,IX
i AF 1Y
BCsAF 5 BCsIX 3 BC,IVY
DE+AF 5 DEsIX 3 DEIVY
HLAF 5 HLsIX § HLIY
¥

IX+AF 5 IX4BC
ioINIY
IYsAF 5 IY,BC % IYHDE § IYHL § IY.IX

IXsDE 3 IXHHL 5 IXHIX

3 IV IY
PUSH Znd Orerand
POP st Operand
(2) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

BC:A 3 DEsA § HL A 3 1XHA 5§ IYA

LD Low order bvte of redister pair,»A (accumulator)
LD Hidh order bvyte of redister pairs@

X E XS LTRSS LELL LIS LIS LI L LSS S SRS R SRR EL L L L ET T
Note: LD IX,A and LD IY,A are instructions which are not documented
by ZILOG. Although they should assemble properly, Radio Shack does
not guarantee that they will work on all processors. You should test them
in your own environment to ensure their validity.

XXX XL ELTI LTSS LSS LS LSS L LSS E S S LR ERE X

o e ofe sk e sk e ol ok ke
sk ke ke ok ok e o ke 3K ok

(3) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:
BC.BC 3 BC.DE 3§ BCHL
DE.BC % DE.,DE § DEHL
HLBC 3 HLsDE 3§ HL.HL
LD High order bvte 1st Operands High order bvte 2nd
Operand

LD Low order bvte lst Operand: Low order byte 2nd
Operand

(4) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:
(BC)BC 3+ (BC)DE
(DE)BC § (DE)sDE
PUSH 1st Operand
b (SP) yHL
LD (HL) sLow order bvte Znd QOrerand

INC HL

312

EXTENDED Z80 INSTRUCTIONS

LD
EX
POP

(HL) +High order byte 2Znd OPerand
(SP) »HL
1st Operand

Side Effect: First operand register is incremented by 1.

(5) Expansion: LD xx,yy

LD
INC
LD

where xx and yy are any of the following operand
pairs:

(HL) »BC § (HL).DE
(IX+DD)Y+BC § (IX+DD)DE § (IX+DD)sHL
(IY+DD)BC 5 (IY+DD),DE § (IY+DD) sHL

(lst Operand)Low order bvyte Znd Operand
Register of lst orperand
(1st Operand) sHigh order bvte 2Znd Operand

Side Effect: first operand register is incremented by 1.

(6) Expansion: LD (BC),HL

PUSH
LD
LD
INC
LD
LD
pPop

AF
Al
(BLC)+A
BC
AH
(BC) +A
AF

Side Effect: Register BC is incremented by 1.
(7) Expansion: LD (DE),HL

PUSH
LD
LD
INC
LD
LD
POP

AF

Al
(DE) +A
DE

AsH
(DE) »A
AF

Side Effect: Register DE is incremented by 1.
(8) Expansion: LD (HL),HL

PUSH
LD
LD
INC
LD
POP

AF

AsH
(HL) +L
HL
(HL) »A
AF

Side Effect: Register HL is incremented by 1.

313

MODEL Ili/4 ALDS

(9) Expansion: LD xx,yy where xx and yy are any of the following operand

LD
LD

pairs:

(BC)Y+(DE) 3§ (BC)Y»(HL) § (BC),(IX+DD)
i (BC)+(IY+DD)

(DE) +(BC) § (DE),(HL) 5 (DE),(IX+DD)
i (BC),»(IY+DD)

(HL) +(BC)Y § (HL)(DE) § (HL),(IX+DD)
i (HL)»(IY+DD)

(IX+DD) »(BC) § (IX+DD) +(DE) 3
(IX+DD) s (HL)Y 3 {IX+DD) +(IY+DD)

(I¥+DD)»(BC) 3§ (IY+DD)»(DE) 3
(I¥+DD) s (HL) 5 (IY+DD) + (IX+DD)

As(2nd Orerand)
(1st Operand) A

Side Effect: Register A is changed.

(10) Expansion: LD xx,yy where xx and yy are any of the following operand

LD

INC

LD

pairs:

BC+(HL) § BC»(IX+DD) § BC(IY+DD)
DEs(HLY § DE.(IX+DD) 5 DE,(IY+DD)
HL{IX+DD) § HL+(IY+DD)

Low order bvte lst Operand»(2Znd Orerand)
Contents of Znd Operand, redister
High order byte 1lst Orerand:{(2nd Orerand)

Side Effect: 2nd operand Register is incremented (HL,IX or 1Y)

(11) Expansion: LD xx,(yy) where xx and (yy) are either of the following

PUSH

EX
LD
INC
LD
POP

operand pairs:
BC.(BC) 3 DE+(DE)

Contents of 2Znd Operand

(SP) +HL

Low arder byte of lst Operands(HL)
HL

Hidh order byte of 1st Operands(HL)
HL

(12) Expansion: LD xx,(yy) where xx and (yy) are either of the following

PUSH
EX
LD

operand pairs:
BC:(DE) 3 DE(BC)

Contents of 2vnd Oeperand
(SP) +HL
Low order bvte of {st Operand,s(HL)

314

EXTENDED Z80 INSTRUCTIONS

INC
LD
EX
POPR

HL

Hidh order byte of 1st Orerand.(HL)

(SP) yHL
Contents of 2Znd Operand

Side Effect: 2nd operand register is incremented by 1.

(13) Expansion: LD xx,(yy) where xx and (yy) are either of the following

PUSH
LD
LD
INC
LD
LD
POP

Side Effect: 2nd operand Register is incremented by 1.

operand pairs:
HL»(BC) 3§ HL(DE)

AF

A+(2nd Orerand)

L+A

Contents of 2nd Operand
As(2nd OpPerand)

H:A

AF

(14) Expansion: LD HL,(HL)

PUSH
LD
INC
LD
LD
Pop

AF
A (HL)
HL
H:(HL)
LA
AF

MOVD operand1,operand2,length

MOVe with Decrement

Mnemonic: MOVD Operands: nnl,nn2,n

Description:

nnl,nn2
nnl,nn2,(nn3)

nnl,(nn2)

length is specified.
length is in BC.
length is contents of
nn3 (byte).

length is first byte
of nn2.

Moves a string of a given length (implied in the operand) from the address of
operand?2 to the address of operandl. MOVD starts at the end of the string and
moves backward starting at the address of operand?2.

You can specify the length as a constant, the contents of an address, or the
contents of the BC register.

315

MODEL lii/4 ALDS

Example:
If the address 4000 contained the string “‘develop’”:
MOVD S@D0H,4008H .7

moves ‘“‘develop” from address 3FFA-4000 to 4FFA-5000 starting with the end
of the string, (i.e. ‘p’) which would be located at address SO00H .

Expansion: MOVD nnl,nn2,n

LD DEsynni
LD HLynnZ
LD BCn
LDDR

Expansion: MOVD nnl, nn2

LD DEsnni
LD HLynnZ
LD A:B

OoR C

JR 21
LDDR

i
Expansion: MOVD nnl,nn2,(nn3)

LD DEsnni
LD HL +nnZ
L.D Asy(nni)

LD C:A
LD B,@
OR A

JR 2Kl
LDDR

Expansion: MOVD nnl,(nn2)

LD DEsnnl
LD HL ynn2
LD C(HL)
LD B0
INC HL

L.D AB

OR C

JR Z%1
LDDR

Al

316

EXTENDED Z80 INSTRUCTIONS

MOVI operand1,operand2,length

MOVe with Increment

Mnemonic: MOVI Operands: nnl,nn2,n length is specified.
nnl,nn2 length is in BC.
nnl,nn2,(nn3) length is contents of nn3.
nnl,(nn2) length is first byte of nn2.

Description:

Moves a string of the given length from the address of operand? to the address of
operandl. MOVI starts at the beginning of the string and moves forward.

You can specify the length as a constant, the contents of a memory address, or
the contents of the BC register.

Example:

If location 4001H contains the string ‘‘develop’; the instruction:

MOVI SO0DH.4B00H,7

moves ‘‘develop” from address 4001H to 5000H starting with d, the first letter.
Expansion: MOVI nnl,nn2,n

LD DEnnl
LD HLnnZ
LD BCn
LDIR

Expansion: MOVI nnl,nn2
LD DEsnnl
LD HLynnZ
LD AsB
OR C
JR Z X1
LDIR

Kl:

Expansion: MOVI nnl,nn2,(nn3)
LD DEsnnl
LD HLnnZ
LD Awnd
LD CiA
LD B0
OR A
JR ZaX
LDIR

X1

317

MODEL lil/4 ALDS

Expansion: MOVI nnl,(nn2)

LD DEnnt
LD HLynn2
LD C(HL)
LD B.0
INC HL

LD AsB

OR C

JR ZX1
LDIR

Kl

POP

Mnemonic: POP Operands: none

Description:

Increments the stack pointer one full word.

Example:

If the stack pointer contains the byte 39H on top and 45H in the next location

POP
increments the stack pointer past these two bytes to the next point.
Expansion:

INC 5P

INC SP

RSTR operand

Mnemonic: RSTR Operands: n where n=
none

4

I

ReSToRe

restores HL,,DE
BC

restores HL,DE
BC and AF
restores HL.,DE
BC,AEIX,IY
restores HL.,,DE
BC,AEIX,IY,HL
DE’BC’

restores HL.,DE
BC,AEIX,IY,HL
DE,BC AF’

318

EXTENDED Z80 INSTRUCTIONS

Description:

Restores the registers specified by the operand after a SAVE (see extended
instruction). This is often used after a return from a subroutine.

Example:

If registers HL, DE, BC are saved (See SAVE),

RETR

restores them to their original values.

Expansion: RSTR

POP HL
POP DE
POP BC
Expansion: RSTR 4
POP HL
POP DE
POP BC
POP AF
Expansion: RSTR I
POP HL
POP DE
POP BC
FPOP AF
POP IY
POP b
Expansion: RSTR P
POP HL
POP DE
POP BC
POP AF
POP IY
POP X
EXX
POP HL
POP DE
POP BC
KX
Expansion: RSTR A
POP HL
POP DE
POP BC
POP AF
POP IY
POP IX

319

MODEL lil/4 ALDS

[VaY]
nn

POP HL
POP DE
POP BC
X AF +AF
POP AF
b AF +AF’

SAVE operand

Mnemonic: SAVE Operands: n where n=

none saves HL,DE,BC

4 saves HL.,DE ,BC
AF

I saves HL,DE,BC,
AEIX,IY

P saves HL,DE,BC
AFIX,IY,HL
DE’BC’

A saves HL,DE,BC,
AFIX,IY,HL,
DE’BC’AF’

Description:

Copies the contents of the registers specified by thes38operand. This is useful
before executing a subroutine. The registers are restored with RSTR (see
extended instruction).

Example:

5AVE

saves the contents of registers HL, DE, BC, to free them for use, then executes a
SAVE.

Expansion: SAVE

PUSH BC
PUSH DE
PUSH HL
Expansion: SAVE 4
PUSH AF
PUSH BC
PUSH DE
PUSH HL

320

EXTENDED Z80 INSTRUCTIONS

Expansion: SAVE |

PUSH IX
PUSH 1Y
PUSH AF
PUSH BC
PUSH DE
PUSH HL
Expansion: SAVE P
EXX
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
Expansion: SAVE A
EX AF sAF 1
PUSH AF
it AF sAF ¢
EXX
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL
SVC operand SuperVisory Call

Mnemonic: SVC Operands: n

Description:

Performs the supervisory call specified by n.

321

MODEL lli/4 ALDS

Expansion:

Model 4:
LD A
RST 28H

Model III:
PUSH BC
PUSH DE
PUSH HL
CALL »n
POP HL
POP DE
POP BC

322

ERROR MESSAGES

Section 111
Error Messages

323

ERROR MESSAGES

Error Messages

Editor Error Messages

Bad File Format

The file is not a type ALEDIT can load, either fixed LRL 1 or Variable, and with
record length not greater than 256 bytes.

Bad Filename Format

The filename is too long or incorrectly formatted on a load or a write command.

Bad Parameters

The ASCII line number converted to hexadecimal is greater than 65535 decimal
(for line number request).

The change string is zero or the length of the line to be changed is zero (for
Change command).

Buffer Full

There is no more room in the edit buffer. Program returns from any mode back to
the command mode. Note that the edit buffer is about 4K smaller if DO, HOST,
COMM, SPOOL, DEBUG or ALBUG are on.

Line Length Too Long, Truncating Line

You are loading a file that has lines longer than 78 characters.

Line Number Too Large
The line number is larger than the last line number in the file.

The editor does not recognize your command. Re-type it.

No Text

The edit buffer is empty, the only commands which are effective are:

Ky Ls ¥y I+ Qs Jy 8

Occurrence Too Large

In the Find and Change commands the occurrence is greater than 255.

325

MODEL lli/4 ALDS

Search ARG Too Long

The string you want to search for is longer than 37 characters.

Syntax Error

The command is improperly specified.

Total Line Length Too Long

The new line created by a Change command is greater than the acceptable Line
Length.

If the Editor returns an error code, it is a TRSDOS error message. You can
identify it, by simply typing in the error number. For example, at TRSDOS
READY type: -

ERROR 19 (ENTER

or at the Editor command mode, type:

§ ERROR 18

and your computer answers you with the correct identification:
INVALID FILE NAME

You can do this any time your computer identifies an error which you are not
aware of.

Hit Any Key To Continue

If there is an error in the load or write routines, the Editor waits for the user to
read the entire error message.

326

ERROR MESSAGES

Assembler Error Codes

Code

Meaning

A

Arithmetic Overflow — result of a multiplication is outside
the range of — 65536 — + 65535

Balance Error of Brackets

Condition Error

ELSE outside an IF . . . ENDIF pair
Unterminated IF

ENDIF without matching IF

Macro defined after a macro was expanded

Macro Definition Error
ENDM outside a macro definition

Macro not terminated when END statement was reached.

Parameter substitution (i.e. "#9") specified in the body of
the macro for a parameter not listed in the heading.
Macro body too long.

Missing END statement
Missing ENDM statement

Include files nested too deeply

llegal character
Control character in source file.

Maximum Line Length Exceeded. The limit is 254
characters a line

Multiple Definition of a Symbol
This includes defining a symbol and declaring it EXTRN

Stack Overflow — expression too complicated

Phase Error— Symbol appears or changes value after
Pass 1. This is often caused by using symbols in the
operand field of EQU, DEFS, or ORG before those
symbols are defined.

Range Error in Relative Addressing.
Use a JP instead of JR, or rearrange code.

327

MODEL Illl/4 ALDS

Code

Meaning

Syntax Error

llegal operation code

Too few, too many, or the wrong type of operands

Use of an external symbol or relocatable expression
where it is not allowed

Use of an instruction generating object code within an
ISECT

Use of an instruction before a PSECT

Instruction illegal after a LINK directive

Mixing of absolute and relocatable PSECTs

Undefined Symbol

{llegal Value

Value too large to fit in a single byte (- 256 — +255
permitted)

lllegal combination of relocatable or external symbols

Reserved word used as a symbol. Do not use a register
name or branch condition as a symbol

328

ERROR MESSAGES

Linker Error Messages

Symbol Table Overflow

There are too many external symbols to fit in memory. Reduce the number of
symbols declared public or global by assembling several modules together, or
using shorter names.

Multiply Defined Entry Symbol

The indicated symbol has been defined more than once (and declared public and/
or global). The two or more definitions may be in the same object file (the
assembler will output an "M’ error) or in different files. Note that using the same
name for a public or global symbol in one file and for a local symbol (not
declared PUBLIC, GLOBAL or EXTRN) in another file is permitted.

Address Different from Pass 1

The indicated symbol changed values between Pass 1 and Pass 2. Normally this
error is preceeded by a ““Multiply Defined Entry Symbol’’ message and the cause
is the same. This error may also be caused by changing disks in the middle of a
link, inserting a disk with a different version of the same object file in a lower
drive number during the link, or linking corrupted object files.

The two addresses are the values from Pass 1 and Pass 2 respectively. These
values and the PSECT map may be used to locate the modules containing the
definitions, assuming that the value falls within the code area of the module.

Undefined External Symbol

The indicated symbol is declared EXTRN in at least one module and is never
defined and declared PUBLIC or GLLOBAL in any module included in the link.
This is usually caused by failing to declare a label PUBLIC, omitting files that
should have been included in the link, or linking incomplete programs to test just
the implemented parts. In the last case, if the instructions referring to the
undefined symbol are never used, the error may be ignored.

Missing External Transfer Address

The main program ends with NOEND, or the object file has been corrupted. The
main program should terminate with END and a transfer address.

Illegal Addressing

The load address being computed by the linker wraps around from FFFFH to
0000H. Reduce the size of your program or use a lower load address.

329

MODEL lil/4 ALDS

Invalid Parameter

The LINKSs are nested too deeply; an illegal character was specified in a filename
on the command line, LINK, or GLINK instruction, the source filename is
missing, or errors were found in the $ = XXXX parameter.

330

ERROR MESSAGES

Linker TRSDOS Errors

File Not Found

Object file not found.
Note: Default extension is /REL.

Attempt to Use a Non-Program File As a Program

The file used is incomplete or in NOLOAD format, or is not an object file.

Open Attempt For a File Already Open

Another file, directly or indirectly, attempted to include itself with a LINK
directive.

Note: Default extension is /REL. Also, other errors may include: disk read/write
errors, password protection, illegal disk change, disk full etc.

331

APPENDIX

Appendix A /Undocumented Z80 Instructions

***i
Note: These instructions are not documented by ZILOG. Radio Shack ¥
does not guarantee that they will work on all processors. You should test %

*
*
#*

them in your own environment to ensure their validity.
FRREREEIEEXREXEEEEEEEERREEEEEEEF XL ERERRXRRXEREFHEERR R R RN

a4 ¢ e S o o o o ke

333

APPENDIX

Shift/Load Instructions

:**%******************;
¥ Note: These instructions are not documented by ZILOG. Radio Shack ¥
¥ does not guarantee that they will work on all processors. You should test ~ #
* *
* *
* *

them in your own environment to ensure their validity.
FEFFEEREKFAFAEXEEERXREREAARRERELFRRREREXERRERHR TR RN ERER

In the following list, the undocumented instructions on the left perform the same
function as the corresponding instructions on the right, except that the memory
location data is shifted or rotated and stored in both the register and the memory
location.

RI.CLD r,m RLC m
RLLD r,m RL m
RRCLD r,m RRC m
RRLLD r,m RRL m
SLALD r,m SLA m
SLOLD r,m SLO m
SRALD r,m SRA m
SRLLD r,m SRL m
r is one of the following registers: AB,CDEH,or L
m is one of the following: (IX+d) or Y +4d)

The operation of the condition code bits and instruction timing is believed to be
the same as for the corresponding shift or rotate instruction.

Object Code:
N I B E R B DD for (IX +d)
1|1;X|1|1x1t0|1 FD for (IY +d)
T T T T T
1 1.6 0 1 0 1 1 CB

n = RLCLD 0 r= 111A
RLLD 2 000 B
RRCLD 1 001 C
RRLLP 3 010D
SLALD 4 011 E
SLOLD 6 100 H
SRALD 5 101 L.
SRLLD 7

335

MODEL 1li/4 ALDS

Bit Set/Load And Bit Reset/Load Instructions

***g
¥ Note: These instructions are not documented by ZILOG. Radio Shack ¥
does not guarantee that they will work on all processors. You should test ¥
* them in your own environment to ensure their validity. ¥
EEX AT E ST E ST EER LIS S S ES SIS LS RS SR XSS LSS ELLSLIS LTSS E LY X

In the following list, the undocumented instructions on the left perform the same
function as the corresponding instructions on the right except that the resulting
data after the bit operation is loaded in both the memory location and the
register.

RESLD r,n,m RES n,m
SETLD r,n,m SET n,m

r is one of the following registers: A,B,C,D,E,H or L
n 1s a bit number with value between 0 and 7, inclusive
m is either (IX +d) or (IY 4+ d)

Object Code:
T T T DD for (IX +d)
1;1;X[1|11110|1 FD for (IY +d)
N R E R R B
1 1.6 0 1 0 1 1 CB

x = 10RESLD n = bitnumber r= 111 A
11 SETLD 000 B

001 C

010D

011 E

100 H

101 L

336

APPENDIX

Index Register Half Instructions

x***:
¥ Note: These instructions are not documented by ZILOG. Radio Shack ¥
¥ does not guarantee that they will work on all processors. You should test %
* *
¥ *
* *

them in your own environment to ensure their validity.
EERFFXFEERLEERERREREERE R AR I ERERFAREELERRERERFREXERRR RN H %

The upper and lower bytes of the index registers IX and 'Y may be manipulated
individually. To use these instructions, the following register names are used:

XH High Byte of IX
XL Low Byte of IX
YH High Byte of IY
YL Low Byte of I'Y

The object code generated has a prefix byte of DD or FD (for the halves of the
IX or IY register) and otherwise is the same as the corresponding instructions
with the H or L register used in place of the high or low byte of an index
register.

The XH, XL, YH and YL registers may be used in the following instructions:

ADC AXH LD r,XH
ADD A, XH LD XH,